The basic principles of mass spectrometry (MS) have long been known. In 1912, for instance, Thomson used MS to demonstrate the existence of two neon isotopes. But it is only in the past two decades that MS has evolved into one of the most sensitive and reliable techniques for structural analysis of organic compounds. Progress in electronics, resulting in greater and more constant accuracy of instrumentation, together with proof that ionized organic compounds in the gaseous phase fragment uniquely according to their chemical structure, have led organic chemists to adopt and further develop the MS technique.


Biochemical Application Fast Atom Bombardment Methyl Stearate Mass Filter Chemical Ionization Mass Spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, F. P., 1973, American Society for Mass Spectrometry, 21st Annual Conference on Mass Spectrometry and Allied Topics, San Francisco, California, Proceedings, p. 76.Google Scholar
  2. Arsenault, G. P., 1972, “Chemical Ionization Mass Spectrometry,” in Biochemical Applications of Mass Spectroscopy (G. R. Waller, ed.), p. 817, Wiley-Interscience, New York.Google Scholar
  3. Barber, M., 1982, Mass Spectrom. Rev. 1. in press.Google Scholar
  4. Barber, M., Bordoli, R. S., Sedgwick, R. D., and Tyler, A. N., 1981a, Fast atom bombardment of solids (FAB): A new ion source for mass spectrometry, J. Chem. Soc. Chem. Commun. 325.Google Scholar
  5. Barber, M., Bordoli, R. S., Sedgwick, R. D., and Tetler, L. W., 1981b, Fast atom bombardment mass spectrometry of two isomeric tripeptides, Org. Mass. Spectrom. 16:256.CrossRefGoogle Scholar
  6. Beckey, H. D., 1971, Field Ionization Mass Spectrometry ,Pergamon Press, Oxford.Google Scholar
  7. Beckey, H. D., 1972, “Determination of the Structures of Organic Molecules and Quantitative Analyses with the Field Ionization Mass Spectrometer,” in Biochemical Applications of Mass Spectrometry (G. R. Waller, ed.), p. 725, Wiley-Interscience, New York.Google Scholar
  8. Benninghoven, A., and Sichtermann, W. K., 1977, Secondary ion mass spectrometry. A new analytical technique for biologically important compounds, Org. Mass. Spectrom. 12:595.CrossRefGoogle Scholar
  9. Benninghoven, A., and Sichtermann, W. K., 1978, Detection, identification and structural investigation of biologically important compounds by secondary ion mass spectrometry, Anal. Chem. 50:1180.PubMedCrossRefGoogle Scholar
  10. Beynon, J. H., Saunders, R. A., and Williams, A. E., 1968, The Mass Spectra of Organic Molecules ,Elsevier Publishing Company, Amsterdam.Google Scholar
  11. Bowie, J. H., and Stapleton, B. J., 1975, Electron impact studies. XCVI Negative ion mass spectra of naturally occurring compounds. Nitrophenyl esters derived from long-chain acids and alcohols, Austr. J. Chem. 28:1011.CrossRefGoogle Scholar
  12. Budzikiewicz, H., Djerassi, C., and Williams, D. H., 1967, Mass Spectrometry of Organic Compounds ,Holden-Day, San Franscisco.Google Scholar
  13. Christophorou, L. G., 1976, Electron attachment to molecules in dense gases (“quasi-liquids”) Chem. Rev. 76:409.CrossRefGoogle Scholar
  14. Christophorou, L. G., Hadjiantoniou, A., and Carter, J. G., 1973, Long-lived parent negative ions formed via nuclear-excited feshback resonances, J. Chem. Soc. Faraday Trans. II 69:1704.CrossRefGoogle Scholar
  15. Clerc, J. T., Erni, F., Jost, C., Meili, T., Nageli, D., and Schwarzenbach, R., 1973, Computerunterstützte Spektreninterpretation zur Strukturaufklärung organischer Verbindungen, Z. Anal. Chem. 264:192.CrossRefGoogle Scholar
  16. Comisarow, M. B., and Marshall, A. G., 1974, Fourier transform ion cyclotron resonance spectroscopy, Chem. Phys. Lett. 25:282.CrossRefGoogle Scholar
  17. Day, R. J., Unger, S. E., and Cooks, R. G., 1980, Molecular secondary ion mass spectrometry, Anal. Chem. 52:557A.CrossRefGoogle Scholar
  18. Dougherty, R. C., Dalton, J., and Biros, F. J., 1972, Negative chemical ionization mass spectra of polycyclic chlorinated insecticides, Org. Mass. Spectrom. 6:1171.CrossRefGoogle Scholar
  19. Eicke, A., Sichtermann, W. K., Benninghoven, A., 1980, Secondary ion mass spectrometry of nucleic acid components: Pyrimidines purines, nucleosides, and nucleotides, Org. Mass. Spectrom. 15:289.CrossRefGoogle Scholar
  20. Field, F. H., 1968, Chemical ionization mass spectrometry, Acc. Chem. Res. 1:42.CrossRefGoogle Scholar
  21. Field, F. H., 1972, “Chemical Ionization Mass Spectrometry,” in Mass Spectrometry ,Vol. 5 (A. Maccoll, ed.), Butterworths, London.Google Scholar
  22. Ghaderi, S., Kulkarni, P. S., Ledford, E. B., Wilkins, C. L., and Gross, M. L., 1981, Chemical ionization in Fourier transform mass spectrometry, Anal. Chem. 53:428.CrossRefGoogle Scholar
  23. Gohlke, R. S., 1962, Time-of-flight mass spectrometry: Application to capillary column gas chromatography, Anal. Chem. 34:1332.CrossRefGoogle Scholar
  24. Hertz, H. S., Evans, D. A., and Biemann, K., 1970, User-oriented computer-searchable library of mass spectrometric literature references, Org. Mass Spectrom. 4:452.CrossRefGoogle Scholar
  25. Hertz, H. S., Hites, R. A., and Biemann, K., 1971, Identification of mass spectra by computer-searching a file of known spectra, Anal. Chem. 43:681.CrossRefGoogle Scholar
  26. Hites, R. A., and Biemann, K., 1971, Computer evaluation of continuously scanned mass spectra of gas Chromatographie effluents, Anal. Chem. 42:855.CrossRefGoogle Scholar
  27. Horning, E. C., Horning, M. G., Carrol, D. I., Dzidic, I., and Stillwell, R. N., 1973, New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure, Anal. Chem. 45:936.CrossRefGoogle Scholar
  28. Horning, E. C., Carrol, D. I., Dzidic, I., Haegele, K. D., Lin, S.-N., Oertli, C. U., and Stillwell, R. N., 1977, Development and use of analytical systems based on mass spectrometry, Clin. Chem. 23:13.PubMedGoogle Scholar
  29. Hunt, D. F., Stafford, G. C., Crow, F. W., and Russell, J. W., 1976, Pulsed positive negative ion chemical ionization mass spectrometry, Anal. Chem. 48:2098.CrossRefGoogle Scholar
  30. Hunter, R. L., and Mclver, R. T., Jr., 1977a, Conceptual and experimental basis for rapid scan ion cyclotron resonance spectroscopy, J. Chem. Phys. Lett. 49:577.CrossRefGoogle Scholar
  31. Hunter, R. L., and Mclver, R. T., Jr., 1977b, Rapid scan ion cyclotron resonance spectroscopy, Am. Lab. 9:13.Google Scholar
  32. Macfarlane, R. D., and Torgerson, D. F., 1976, Californium-252 plasma desorption mass spectrometry, Science 191:920.PubMedCrossRefGoogle Scholar
  33. McLafferty, F. W., 1963, “Decompositions and Rearrangements of Organic Ions,” in Mass Spectrometry of Organic Ions (F. W. McLafferty, ed.), p. 309, Academic Press, New York.Google Scholar
  34. McLafferty, F. W., 1973, Interpretation of Mass Spectra ,W. A. Benjamin, Inc., Reading Massachusetts.Google Scholar
  35. Marshall, A. G., Comisarow, M. B., and Panisod, G., 1979, Relaxation and spectral line shape in Fourier transform ion resonance spectroscopy, J. Chem. Phys. 71:4434.CrossRefGoogle Scholar
  36. Nicolet Fourier transform mass spectrometer. A preliminary bulletin prepared for the 1981 ASMS Conference, Nicolet Analytical Instruments, Madison, Wisconsin.Google Scholar
  37. Rohwedder, W. K., 1971, Field ionization mass spectrometry of long chain fatty methyl esters, Lipids 6:906.CrossRefGoogle Scholar
  38. Ryhage, R., 1964, Use of a mass spectrometer as a detector and analyzer for effluents emerging from high-temperature gas liquid chromatography columns, Anal. Chem. 36:759.CrossRefGoogle Scholar
  39. Ryhage, R., 1967, Efficiency of molecule separators used in gas chromatograph-mass spectrometer applications, Arkiv Kemi 26:305.Google Scholar
  40. Ryhage, R., and Stenhagen, E., 1960, Mass spectrometry in lipid research, J. Lipid. Res. 1:361.PubMedGoogle Scholar
  41. Smith, A. L. C., and Field, F. H., 1977, Gaseous anion chemistry. Formation and reactions of OH., Reactions of anions with N2O, OH negative chemical ionization, J. Am. Chem. Soc. 99:6471.CrossRefGoogle Scholar
  42. Tannenbaum, H. P., Roberts, J. D., and Dougherty, R. C., 1975, Negative chemical ionization mass spectrometry-Chloride attachment spectra. Anal. Chem. 47:49.CrossRefGoogle Scholar
  43. Torgerson, D. F., Skowrouski, R. P., and Macfarlane, R. D., 1974, New approach to the mass spectrometry of nonvolatile compounds, Biochem. Biophys. Res. Commun. 60:616.PubMedCrossRefGoogle Scholar
  44. Waller, G. R., ed., 1972, Biochemical Applications of Mass Spectrometry ,Wiley-Interscience, New York.Google Scholar
  45. Waller, G. R., and Dermer, O. C., eds., 1980, Biochemical applications of Mass Spectrometry, First supplementary volume. Wiley-Interscience, New York.Google Scholar
  46. Watson, J. T., and Biemann, K., 1964, High-resolution mass spectra of compounds emerging from a gas Chromatograph. Anal. Chem. 36:1135.CrossRefGoogle Scholar
  47. Wiley, W. C., 1956, Bendix time-of-flight mass spectrometer. Science 124:817.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Göran Odham
    • 1
  • Lennart Larsson
    • 2
  1. 1.Laboratory of Ecological ChemistryUniversity of LundLundSweden
  2. 2.Department of Medical MicrobiologyUniversity of LundLundSweden

Personalised recommendations