Advertisement

Mass Spectrometry of Nitrogen Compounds in Ecological Microbiology

  • Göran Bengtsson

Abstract

New ionization techniques recently introduced in mass spectrometry (MS) have been successfully applied in determination of the structure and molecular weight of amino acids, amines, and other nitrogen-containing compounds. Fragmentation pathways of derivatives of these compounds can now be obtained with EI, CI, radionuclide fission fragmentation, and negative ion MS. Applications of MS also benefit from the development of higher accuracy in isotopic measurements and new techniques for derivatization and vaporization. Three areas of research in ecological microbiology are particularly interesting in the light of advances in mass spectrometric techniques: (1) Structure elucidation of metabolites; (2) quantitative MS; (3) isotope ratio measurements. Although the power of modern MS in research on nitrogen compounds has been demonstrated in some fields of application, such as biochemistry and medicine, comparatively few papers have reported applications of MS in ecological microbiology. The following is an attempt to describe some efforts to use MS to elucidate information on microbial activity of ecological significance.

Keywords

Nitrogen Compound Fumaric Acid Isotope Ratio Measurement Pipecolic Acid Diaminopimelic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amarger, N., Mariotti, A., Mariotti, F., Durr, J. C., Bourguignon, C., and Lagacherie, B., 1979, Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in 15N natural abundance, Plant and Soil 52:269–280.CrossRefGoogle Scholar
  2. Aragozzini, F., Ferrari, A., Pacini, N., and Gualandris, R., 1979, Indole-3-lactic acid as a tryptophan metabolite produced by Bifidobacterium spp., Appl. Environ. Microbiol. 38:544–546.PubMedGoogle Scholar
  3. Belasco, I. J., Pease, H. L., and Reiser, R. W., 1978, Microbial conversion of methionine hydroxy analogue and its natural occurrence in various foods and feed products, J. Agric. Food Chem. 26:327–330.PubMedCrossRefGoogle Scholar
  4. Brezonik, P. L., and Lee, G. F., 1968, Denitrification as a nitrogen sink in Lake Mendota, Wisconsin, Environ. Sci. Tech. 2:120–125.Google Scholar
  5. Buck, R., Ebersprächer, J., and Lingens, F., 1979, L-(2,3-Dihydroxyphenyl)alanin, eine neue natürliche Aminosäure, Liebigs Ann. Çhem. 4:564–571.CrossRefGoogle Scholar
  6. Caperon, J., Schell, D., Hirota, J., and Laws, E., 1979, Ammonium excretion rates in Kaneohe Bay, Hawaii, measured by a 15N isotope dilution technique, Mar. Biol. 54:33–40.CrossRefGoogle Scholar
  7. Chen, R. L., Keeney, D. R., Graetz, D. A., and Holding, A. J., 1972, Denitrification and nitrate reduction in Wisconsin lake sediments, J. Environ. Quality 1:158–162.CrossRefGoogle Scholar
  8. Delwiche, C. C., and Steyn, P. L., 1970, Nitrogen isotope fractionation in soils and microbial reactions, Environ. Sci. Tech. 4:929–935.CrossRefGoogle Scholar
  9. Dugdale, V. A., and Dugdale, R. C., 1965, Nitrogen metabolism in lakes III. Tracer studies of the assimilation of inorganic nitrogen sources, Limnol. Oceanog. 10:53–57.CrossRefGoogle Scholar
  10. Dugdale, R. C., and Goering, J. J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanog. 12:197–206.Google Scholar
  11. Focht, D. D., 1973, Isotope fractionation of 15N and 14N in microbiological nitrogen transformations: A theoretical model, J. Environ. Quality 2:247–252.CrossRefGoogle Scholar
  12. Gaebler, O. H., Choitz, H. C., Vitti, T. G., and Vukmirovich, R., 1963, Significance of N15 excess in nitrogenous compounds of biological origin, Can. J. Biochem. Physiol. 41:1089– 1097.PubMedCrossRefGoogle Scholar
  13. Goering, J. J., and Dugdale, V. A., 1966, Estimates of the rates of denitrification in a subarctic lake, Limnol. Oceanog. 11:113–117.CrossRefGoogle Scholar
  14. Guerrant, G. O., Lambert, M. S., and Moss, C. W., 1979, Identification of diaminopimelic acid in the Legionnaires disease bacterium. J. Clin. Microbiol. 10:815–818.PubMedGoogle Scholar
  15. Herrmann, V., and Jüttner, F., 1977, Excretion products of algae. Identification of biogenic amines by gas-liquid chromatography and mass spectrometry of their trifluoroacetamides, Anal. Biochem. 78:365–373.PubMedCrossRefGoogle Scholar
  16. Ivanof, A., Muresan, L., Quai, L., Bologa, M., Palibroda, N., Mocanu, A., Vargha, E., and Barzu, O., 1981, Preparation of 15N-labeled L-aspartic acid using whole bacteria as enzyme source, Anal. Biochem. 110:267–269.PubMedCrossRefGoogle Scholar
  17. Katz, E., Mason, K. T., and Mauger, A. B., 1973, Identification of cis-5-methylproline in hydrolysis of actinomycin Z5, Biochem. Biophys. Res. Comm. 52:819-826.Google Scholar
  18. Katz, E., Mason, K. T., and Mauger, A. B., 1974, The presence of -amino-ß,-dihydroxybutyric acid in hydrolysates of actinomycin Zl, J. Antiobiotics 27:952–955.CrossRefGoogle Scholar
  19. Katz, E., Mason, K. T., and Mauger, A. B., 1975, 3-hydroxy-5-methylproline, a new amino acid identified as a component of actinomycin Z1, Biochem. Biophys. Res. Comm. 63:502–508.PubMedCrossRefGoogle Scholar
  20. Keddie, R. M., and Bonsfield, I. J., 1980, Cell-Wall Composition in the Classification and Identification of Coryneform Bacteria,,, in Microbial Classification and Identification (M. Goodfellow, and R. G. Board, eds.), pp. 167–188, Academic Press, New York.Google Scholar
  21. Keller-Schierlein, W., and Widmer, J., 1976, Stoffwechselprodukte von Mikroorganismen. Über die aromatische Aminosäure des Echinocandins B: 3,4-Dihydroxyhomotyrosin, Helv. Chim. Acta 59:2021–2031.PubMedCrossRefGoogle Scholar
  22. Kreitler, C. W., and Jones, D. C., 1975, Natural soil nitrate: The cause of the nitrate contamination of ground water in Runnels County, Texas, Ground Water 13:53–61.CrossRefGoogle Scholar
  23. Kreitler, C. W., Ragone, S. E., and Katz, B. G., 1978, N15/N14 ratios of ground-water nitrate, Long Island, New York, Ground Water 16:404–409.Google Scholar
  24. Letey, J., Jury, W. A., Hadas, A., and Valoras, N., 1980, Gas diffusion as a factor in laboratory incubation studies on denitrification,Environ. Qual. 9:223–227.CrossRefGoogle Scholar
  25. Lewis, O. A. M., 1975, An 15N-14C study of the role of the leaf in the nitrogen nutrition of the seed of Datura stramonium L., J. Exp. Bot. 26:361–366.CrossRefGoogle Scholar
  26. McGill, W. B., Shields, J. A., and Paul, E. A., 1975, Relation between carbon and nitrogen turnover in soil organic fractions of microbial origin, Soil Biol. Biochem. 7:57–63.CrossRefGoogle Scholar
  27. Nordbring-Hertz, B., and Odham, G., 1980, Determination of volatile nematode exudates and their effects on a nematode-trapping fungus, Microb. Ecol. 6:241–251.CrossRefGoogle Scholar
  28. Nömmik, H., and Thorin, J., 1972, Transformations of 15N-labeled nitrite and nitrate in forest raw humus during anaerobic incubation, Proc. International Atomic Energy Agency, Vienna ,pp. 369–382.Google Scholar
  29. Onodera, R., and Kandatsu, M., 1969, Occurrence of l-. )-pipecolic acid in the culture medium of rumen ciliate protozoa, Agr. Biol. Chem. 33:113–115.CrossRefGoogle Scholar
  30. Pavlou, S. P., Firederich, G. E., and Macisaac, J. J., 1974, Quantitative determination of total organic nitrogen and isotope enrichment in marine phytoplankton, Anal. Biochem. 61:16–24.PubMedCrossRefGoogle Scholar
  31. Sakurai, A., Sakata, K., Tamura, S., Aizawa, K., Yanagishima, N., and Shimoda, C., 1976, Isolation and structure elucidation of substance-IB, a hexapeptide inducing sexual agglutination in Saccharomyces cerevisiae, Agr. Biol. Chem. 40:1451–1452.CrossRefGoogle Scholar
  32. Shiba, T., Mukunoki, Y., and Akiyama, H., 1975, Component amino acids of the antibiotic longicatenamycin. Isolation of 5-chloro-D-tryptophan, Bull. Chem. Soc. Jpn 48:1902– 1906.CrossRefGoogle Scholar
  33. Stribley, D. P., and Read, D. J., 1974, The biology of mycorrhiza in the ericaceae. IV. The effect of mycorrhizal infection on uptake of 15N from labeled soil by Vaccinium macrocarpon Ait., NewPhytol. 73:1149–1155.Google Scholar
  34. Tirén, T., Thorin, J., and Nömmik, H., 1976, Denitrification measurements in lakes, Acta Agr.Scand. 26:175–184.CrossRefGoogle Scholar
  35. Tsutsumi, W., Onodera, R., and Kandatsu, M, 1975, Occurrence of -aminovaleric acid in the culture medium of rumen ciliate protozoa, Agr. Biol. Chem. 39:711–714.CrossRefGoogle Scholar
  36. Volk, R. J., Pearson, C. J., and Jackson, W. A., 1979, Reduction of plant tissue nitrate to nitric oxide for mass spectrometric 15N analysis, Anal. Biochem. 97:131–135.PubMedCrossRefGoogle Scholar
  37. Wada, E., Tsuji, T., Saino, T., and Hattori, A., 1977, A simple procedure for mass spectrometric microanalysis of 15N in particulate organic matter with special reference to 15N-tracer experiments, Anal. Biochem. 80:312–318.PubMedCrossRefGoogle Scholar
  38. Wegst, W., Tittmann, U., Ebersprächer, J., and Lingens, F., 1981, Bacterial conversion of phenylalanine and aromatic carboxylic acids into dihydrodiols, Biochem. J. 194:679–684.PubMedGoogle Scholar
  39. Wellman, R. P., Cook, F. D., and Krouse, H. R., 1968, Nitrogen-15: Microbiological alteration of abundance, Science 161:269–270.PubMedCrossRefGoogle Scholar
  40. Westerman, R. L., and Tucker, T. C., 1974, Effect of salts and salts plus nitrogen-15-labeled ammonium chloride on mineralization of soil nitrogen, nitrification, and immobilization, Soil Sci. Soc. Am. Proc. 38:602–605.CrossRefGoogle Scholar
  41. White, R. H., and Rudolph, F. B., 1978, The origin of the nitrogen atom in the thiazole ring of thiamine in Escherichia coli, Biochim. Biophys. Acta 542:340–347.PubMedCrossRefGoogle Scholar
  42. Wietzerbin, J., Das, B. C., Petit, J. F., Lederer, E., Leyh-Bouille, M., and Ghuysen, J. M., 1974, Occurrence of D-alanyl-(D)-raesø-diaminopimelic acid and meso-diaminopimelylmeso- diaminopimelic acid interpeptide linkages in the peptidoglycan of Mycobacteria, Biochemistry 13:3471–3476.PubMedCrossRefGoogle Scholar
  43. Yaacob, O., and Blair, G. J., 1980, Mineralization of 15N-labeled legume residues in soils with different nitrogen contents and its uptake by rhodes grass, Plant and Soil 57:237– 248.CrossRefGoogle Scholar
  44. Zerilli, L. F., Tuan, G., Turconi, M., and Coronelli, C., 1977, Mass spectra of lanthionine and /?-methyllanthionine isolated from gardimycin, Annal. Chim. 67:691–697.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Göran Bengtsson
    • 1
  1. 1.Laboratory of Ecological ChemistryUniversity of LundLundSweden

Personalised recommendations