Advertisement

Analytical Pyrolysis in Clinical and Pharmaceutical Microbiology

  • Gerhan Wieten
  • Henk L. C. Meuzelaar
  • Johan Haverkamp

Abstract

The applicability of gas chromatography (GC) and mass spectrometry (MS) to the analysis of organic samples is restricted to volatile substances. Chemical derivatization can be used for some classes of less volatile compounds as a powerful, yet complicated and laborious way to bring them to a suitable form for GC or MS analysis. However, the analysis of highly complex biological compounds such as macromolecules and in particular complete bacterial cells remains out of reach of these separation and analysis techniques, unless preceded by an additional fragmentation method such as pyrolysis.

Keywords

Pyrolysis Product Capsular Polysaccharide Tuberculosis Complex Canonical Variate Analysis Discriminant Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbey, L. E., Highsmith, A. K., Moran, T. F., and Reiner, E. J., 1981, Differentiation and characterization of Klebsiella pnewnoniae strains by pyrolysis-gas-liquid chromatography-mass spectrometry, J. Clin. Microbiol. 13:313.PubMedGoogle Scholar
  2. Anhalt, J. P., and Fenselau, C., 1975, Identification of bacteria using mass spectrometry, Anal. Chem. 47:219.Google Scholar
  3. Beuvery, E. C., Miedema, F., Van Delft, R., Haverkamp, J., Leusink, H. B., te Pas, B. J., Teppema, K. S., and Tiesjema, R. H., 1983a, Preparation, physico-chemical, and immunological characterization of polysaccharide-outer membrane protein complexes of Neisseria meningitidis, Infect. Immun. 40:369.PubMedGoogle Scholar
  4. Beuvery, E. C., Miedema, F., Van Delft, R., and Haverkamp, J., 1983b, Preparation and immunochemical characterization of meningococcal group C polysaccharide-tetanus toxoid conjugates as a new generation of vaccines, Infect. Immun. 40:39.PubMedGoogle Scholar
  5. Blomquist, G., Johansson, E., Söderström, B., and Wold, S., 1979, Data analysis of pyrolysischromatograms by means of SIMCA pattern recognition, J. Anal. Appl. Pyrolysis 1:53.Google Scholar
  6. Boon, J. J., De Boer, W. R., Kruyssen, F. J., and Wouters, J. T. M., 1981, Pyrolysis mass spectrometry of whole cells, cell walls and isolated cell wall polymers of Bacillus subtilis var. niger WM., J. Gen. Microbiol. 122:119.Google Scholar
  7. Borst, J., Van der Snee-Enkelaar, A. C., and Meuzelaar, H. L. C., 1978, Typing of Neisseria genorrhoeae by pyrolysis mass spectrometry, Antonie van Leeuwenhoek 44:253.Google Scholar
  8. Burns, D. T., Stretton, R. J., and Jayatilake, S. D. A. K. ,1976, Pyrolysis gas chromatography as an aid to the identification of Penicillium species, J. Chrom. 16:107.Google Scholar
  9. Cone, R. D., and Lechowich, R. V., 1970, Differentiation of Clostridium botulinum types A, B, and E by pyrolysis gas-liquid chromatography, Appl. Microbiol. 44;25.Google Scholar
  10. Denoyer, E., Van Grieken, R. Adams, F., and Natusch, D. F. S., 1982, Laser microprobe mass spectrometry I, Anal. Chem. 54:26A.Google Scholar
  11. Emswiler, B. S., and Kotula, A. W., 1978, Differentiation of Salmonella serotypes by pyrolysis gas-liquid chromatography, Appl. Environ. Microbiol. 35:97.PubMedGoogle Scholar
  12. Eshuis, W., Kistemaker, P. G., and Meuzelaar, H. L. C., 1977, “Some Numerical Aspects of Reproducibility and Specificity,” in Analytical Pyrolysis (C. E. R. Jones, and C. A. Cramers, eds.), pp. 151–166, Elsevier, Amsterdam.Google Scholar
  13. Farré-Rius, F., and Guiochon, G., 1968, On the conditions of flash pyrolysis of polymers as used in pyrolysis gas chromatography, Anal. Chem. 40:998.Google Scholar
  14. Frane, J. W., 1976, The BMD and BMDP series of statistical computer programs, Communica tionof the ACM 19:570.Google Scholar
  15. French, G. L., Gutteridge, C. S., and Phillips, I., 1980, Pyrolysis gas chromatography of Pseudomonas and Acinetobacter species, J. Appl. Bact. 49:505.Google Scholar
  16. Gough, T. A., and Jones, C. E. R., 1975, Precision of the pyrolysis-gas chromatography of polymers, Chromatographia 8:696.Google Scholar
  17. Gutteridge, C. S., and Norris, J. R., 1979, The application of pyrolysis techniques to the identification of micro-organisms, J. Appl. Bact. 47:5.Google Scholar
  18. Gutteridge, C. S., and Norris, J. R. ,1980, Effect of different growth conditions on the discrimination of three bacteria by pyrolysis gas-liquid chromatography, Appl. Environ. Microbiol. 40:462.PubMedGoogle Scholar
  19. Gutteridge, C. S., MacFie, H. J. H., and Norris, J. R., 1979, Use of principal components analysis for displaying variation between pyrograms of microorganisms, J. Anal. Appl. Pyrolysis 1:67.Google Scholar
  20. Gutteridge, C. S., MacKey, B. M., and Norris, J. R., 1980, A pyrolysis gas-liquid chromatography study of Clostridium botulinum and related organisms J. Appl. Bacteriol 49:165.PubMedGoogle Scholar
  21. Haddadin, J. M, Stirland, R. M., Preston, N. W., and Collard, P., 1973, Identification of Vibrio cholerae by pyrolysis gas-liquid chromatography, Appl. Microbiol. 25:40.PubMedGoogle Scholar
  22. Haverkamp, J., Kistemaker, P. G., and Eshuis, W., 1979, Pyrolysis mass spectrometry as an analytical tool in microbiology, Anthonie van Leeuwenhoek 45:627.Google Scholar
  23. Haverkamp, J., Eshuis, W., Boerboom, A. J. H., and Guinée, P. A. M., 1980a, “Pyrolysis Mass Spectrometry as a Rapid Screening Method of Biological Materials”, in Advances in Mass Spectrometry ,Volume 8A (A. Quayle, ed.) pp. 983–989, Heyden and Son, London.Google Scholar
  24. Haverkamp, J., Meuzellaar, H. L. C., Beuvery, E. C., Boonekamp, P. M., and Tiesjema, R. H., 1980b, Characterization of Neisseria meningitidis capsular polysaccharides containing sialic acid by pyrolysis mass spectrometry, Anal. Biochem. 104:407.PubMedGoogle Scholar
  25. Heinen, H. J., Meier, S., Vogt, H., and Wechsung, R., 1980, “Laser-Induced Mass Spectrometry of Organic Compounds and Inorganic Compounds with a Laser Microprobe Mass Analyzer”, in Advances in Mass Spectrometry ,Vol. 8 (A. Quayle, ed.) pp. 942–953, Heyden and Son, London.Google Scholar
  26. Hercules, D. M., Day, R. J., Balasanmugam, K., Dang, T. A., and Li, C. P., 1982, Laser microprobe mass spectrometry, Anal. Chem. 54:280A.Google Scholar
  27. Hudson, J. R., Morgan, S. L., and Fox, A., 1982, Quantitative pyrolysis GC-MS studies of bacterial cell walls, Anal. Chem. 120:59.Google Scholar
  28. Huff, S. M., Meuzelaar, H. L. C., Pope, D. L. ,and Kjeldsberg, C. R., 1982, Characterization of leukemic and normal white blood cells by Curie-point pyrolysis-mass spectrometry, I, J. Anal. Appl. Pyrolysis 3:95.Google Scholar
  29. Huis in’t Veld, J. H. J., Meuzelaar, H. L. C., and Tom, A., 1973, Analysis of streptococcal cell wall fractions by Curie-point pyrolysis gas-liquid chromatography, Appl. Microbiol. 26:92.PubMedGoogle Scholar
  30. Irwin, W. J., 1979a, Analytical pyrolysis-An overview (Part I), J. Anal. Pyrolysis 1:1.Google Scholar
  31. Irwin, W. J., 1979b, Analytical pyrolysis-An overview (Part II), J. Anal. Pyrolysis 1:89.Google Scholar
  32. Kistemaker, P. G., Meuzelaar, H. L. C., and Posthumus, M. A., 1975, “Rapid and Automated Identification of Microorganisms by Curie-Point Pyrolysis Techniques. II. Fast Identification of Microbiological Samples by Curie-point Pyrolysis-Mass Spectrometry”, in New Approaches to the Identification of Microorganisms (C. G. Hedén, and T. Illéni, eds.), pp. 179–191, John Wiley and Sons, London.Google Scholar
  33. Kowalski, B. R., 1975, Measurement analysis by pattern recognition, Anal. Chem. 47:1152 A.Google Scholar
  34. Kruskal, J. B., 1964, Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis, Psychometrika 29:1.Google Scholar
  35. Levy, R. L., 1966, Pyrolysis gas chromatography: A review of the technique, Chrom. Rev. 8:48.Google Scholar
  36. Levy, R. L., Fauter, D. L., and Wolf, C. J., 1972, Temperature rise time and true pyrolysis temperature in pulse mode pyrolysis gas chromatography, Anal. Chem. 44:38.Google Scholar
  37. Lincoln, K. A., 1965, Flash-pyrolysis of solid-fuel materials by thermal radiation, Pyrodynamics 2:13.Google Scholar
  38. Louter, G. J., Boerboom, A. J. H., Stalmeier, P. F. M., Tuithof, H. H., and Kistemaker, J., 1980a, A tandem mass spectrometer for collision-induced dissociation, Int. J. Mass Spectrom. and Ion Physics 33:335.Google Scholar
  39. Louter, G. J., Stalmeier, P. F. M., Boerboom, A. J. H., Haverkamp, J., and Kistemaker, J., 1980b, High sensitivity in CID mass spectrometry, structure analysis of pyrolysis fragments, Z. Naturforsch. 35c:6.Google Scholar
  40. MacFie, H. J. H., Gutteridge, C. S., and Phillips, I., 1978, Use of canonical variates analysis in differentiation of bacteria by pyrolysis gas-liquid chromatography, J. Gen. Microbiol. 104:67.PubMedGoogle Scholar
  41. McLafferty, F. W., 1981, Tandem mass spectrometry. Science ,214:280.PubMedGoogle Scholar
  42. Menger, F. M., Epstein, G. A., Goldberg, D. K., and Reiner, E., 1972, Computer matching of pyrolysis chromatograms of pathogenic microorganisms, Anal. Chem. 44:423.PubMedGoogle Scholar
  43. Meuzelaar, H. L. C., 1978, Pyrolysis mass spectrometry; prospects for interlaboratory standardization, Proceedings 26th Annual ASMS Conference on Mass Spectrometry and Allied Topics ,St. Louis, Missouri, pp. 39–52.Google Scholar
  44. Meuzelaar, H. L. C., and In’t Veld, R. A., 1972, A technique for Curie point pyrolysis gas chromatography of complex biological samples, J. Chrom. Sci. 10:213.Google Scholar
  45. Meuzelaar, H. L. C., and Kistemaker, P. G., 1973, A technique for fast and reproducible fingerprinting of bacteria by pyrolysis mass spectrometry, Anal. Chem. 45:587.PubMedGoogle Scholar
  46. Meuzelaar, H. L. C., Posthumus, M. A., Kistemaker, P. G., and Kistemaker, J., 1973, Curie-point pyrolysis in direct combination with low voltage electron impact ionization mass spectrometry: A new method for the analysis of nonvolatile organic materials, Anal. Chem. 45. Chem. 45:1546.Google Scholar
  47. Meuzelaar, H. L. C., Ficke, H. G., and Den Harink, H. C., 1975a, Fully automated Curie-point pyrolysis gas-liquid chromatography, J. Chrom. Sci. 13:12.Google Scholar
  48. Meuzelaar, H. L. C., Kistemaker, P. G., and Tom, A., 1975b, “Rapid and Automated Identification of Microorganisms by Curie-Point Pyrolysis Techniques. I. Differentiation of Bacterial Strains by Fully Automated Curie-Point Pyrolysis Gas-Liquid Chromatography,” in New Approaches to the Identification of Microorganisms (C. G. Hedén, and T. Illéni, eds.), pp. 165–178, John Wiley and Sons, London.Google Scholar
  49. Meuzelaar, H. L. C., Kistemaker, P. G., Eshuis, W., and Engel, H. W. B., 1976, “Progress in Automated and Computerised Characterisation of Microorganisms by Pyrolysis Mass Spectrometry”, in Rapid Methods and Automation in Microbiology (S. W. B. Newson, and H. H. Johnston, eds.), pp. 225–230, Learned Information, Oxford.Google Scholar
  50. Meuzelaar, H. L. C., Kistemaker, P. G., Eshuis, W., and Boerboom, A. J. H., 1978, Automated Pyrolysis-Mass Spectrometry; Application to the Differentiation of Microorganisms, in Advances in Mass Spectrometry ,Volume 7B (N. D. Daley, Ed.) pp. 1452–1456, Heyden and Sons, London.Google Scholar
  51. Meuzelaar, H. L. C., Haverkamp, J., and Hileman, F. D., 1982, Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials ,Elsevier, Amsterdam.Google Scholar
  52. Needleman, M., and Stuchbery, P., 1977, “The Identification of Microorganisms by Pyrolysis Gas-Liquid Chromatography,” in Analytical Pyrolysis (C. E. R. Jones, and C. A. Cramers, eds.), pp. 77–88, Elsevier, Amsterdam.Google Scholar
  53. Nie, N. N., Hull, C. H., Jenkins, J. G., Steinbrenner, K., and Bent, D. H., 1975, Statistical Package for the Social Sciences (SPSS), McGraw Hill, New York.Google Scholar
  54. O’Donnell, A. G., MacFie, H. J. H., and Norris, J. R., 1980a, An investigation of the relationship between Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides using pyrolysis gas-liquid chromatography, J. Gen. Microbiol. 119:189.Google Scholar
  55. O’Donnell, A. G., Norris, J. R., Berkeley, R. C. W., Claus, D., Kaneko, T., Logan, N. A.,. and Nozaki, R., 1980b, Characterization of Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis ,and Bacillus amiloliquefaciens by pyrolysis gas-liquid chromatography, deoxyribonucleic acid-deoxyribonucleic acid hybridization, biochemical tests, and API systems, Int. I. Syst. Bacteriol. 30:448.Google Scholar
  56. Oxborrow, G. S., Fields, N. D., and Puleo, J. R., 1976, Preparation of pure microbiological samples for pyrolysis gas-liquid chromatography studies, Appl. Environ. Microbiol. 32:306.PubMedGoogle Scholar
  57. Oxborrow, G. S., Fields, N. D., and Puleo, J. R., 1977a, Pyrolysis Gas-Liquid Chromatography Studies of the Genus Bacillus Effect of Growth Time on Pyrochromatogram Reproducibility, in Analytical Pyrolysis (C. E. R. Jones, and C. A. Cramers, eds.), pp. 69–76, Elsevier, Amsterdam.Google Scholar
  58. Oxborrow, G. S., Fields, N. D., and Puleo, J. R., 1977b, Pyrolysis gas-liquid chromatography of the genus Bacillus Effect of growth media on pyrochromatogram reproducibility, Appl. Environ. Microbiol. 33:865.PubMedGoogle Scholar
  59. Oyama, V. I., 1963, Use of gas chromatography for the detection of life on Mars, Nature 200:1058.Google Scholar
  60. Oyama, V. I., and Carle, G. C., 1967, Pyrolysis gas chromatography application to life detection and chemotaxonomy, J. Gas. Chrom. 5:151.Google Scholar
  61. Quinn, P. A., 1974, Development of high-resolution pyrolysis gas chromatography for the identification of microorganisms, J. Chrom. Sci. 12:796.Google Scholar
  62. Reiner, E., 1965, Identification of bacterial strains by pyrolysis gas-liquid chromatography, Nature 206:1272.PubMedGoogle Scholar
  63. Reiner, E., 1977, “The Role of Pyrolysis Gas-Liquid Chromatography in Biomedical Studies,” in Analytical Pyrolysis (C. E. R. Jones, and C. A. Cramers, eds.), pi. 49–56, Elsevier, Amsterdam.Google Scholar
  64. Reiner, E., and Bayer, F. L., 1978, Botulism: A pyrolysis gas-liquid Chromatographic study, J. Chrom. Sci. 16:62.Google Scholar
  65. Reiner, E., and Ewing, W. H., 1968, Chemotaxonomic studies of some gram-negative bacteria by means of pyrolysis gas-liquid chromatography, Nature 217:191.Google Scholar
  66. Reiner, E., and Kubica, G. P., 1969, Predictive value of pyrolysis gas-liquid chromatography in the differentiation of mycobacteria, Am. Rev. Resp. Dis. 99:42.PubMedGoogle Scholar
  67. Reiner, E., Beam, R. E., and Kubica, G. P., 1969, Pyrolysis gas-liquid chromatography studies for the classification of mycobacteria, Am. Rev. Resp. Dis. 99:750.PubMedGoogle Scholar
  68. Reiner, E., Hicks, J. J., Beam, R. E., and David, H. L., 1971, Recent studies on mycobacterial differentiation by means of pyrolysis gas-liquid chromatography, Am. Rev. Resp. Dis. 104:656.PubMedGoogle Scholar
  69. Reiner, E., Hicks, J. J., Ball, M. M., and Martin, W. J., 1972, Rapid characterization of Salmonella organisms by means of pyrolysis gas-liquid chromatography, Anal. Chem. 44:1058.PubMedGoogle Scholar
  70. Risby, T. H., and Yergey, A. L., 1976, Identification of bacteria using linear programmed thermal degradation mass spectrometry, J. Phys. Chem. 80:2839.Google Scholar
  71. Risby, T. H., and Yergey, A. L., 1978, Linear programmed thermal degradation mass spectrometry, Anal. Chem. 50:327A.Google Scholar
  72. Schulten, H. R., 1979, Biochemical, medical, and environmental applications of field-ionization and field-desorption mass spectrometry, Int. J. Mass. Spectrom. 32:97.Google Scholar
  73. Schulten, H. R., Beckey, H. D., Meuzelaar, H. L. C., and Boerboom, A. J. H., 1973, High-resolution field-ionization mass spectrometry of bacterial pyrolysis products, Anal. Chem. 45:191.PubMedGoogle Scholar
  74. Sekhon, A. S., and Carmichael, J. W., 1972, Pyrolysis gas-liquid chromatography of some dermatophytes, Can. J. Microbiol. 18:1593.PubMedGoogle Scholar
  75. Seydel, U., and Heinen, H. J., 1979, First results on fingerprinting of single mycobacteria cells with LAMMA, Proceedings of 6th International Symposium on Mass Spectrometry in Biochemistry and Medicine ,Venice, Italy.Google Scholar
  76. Shafizadeh, F., 1982, Introduction to pyrolysis of biomass (review), J. Anal. Appl. Pyrolysis 3:283.Google Scholar
  77. Simon, W., and Giacobbo, H., 1965, Thermische Fragmentierung und Strukturbestimmung organischer Verbindungen, Chemie Ingenieur Technik 37:709.Google Scholar
  78. Simmonds, P. G., 1970, Whole microorganisms studied by pyrolysis gas chromatography mass spectrometry: Significance for extraterrestial life detection experiments, Appl Microbiol. 20:567.PubMedGoogle Scholar
  79. Stack, M. V., Donoghue, H. D., Tyler, J. E., and Marshall, M., 1977, “Comparison of Oral Streptococci by Pyrolysis Gas-Liquid Chromatography,” in Analytical Pyrolysis (C. E. R. Jones, and C. A. Cramers, Eds.), pp. 57–68, Elsevier, Amsterdam.Google Scholar
  80. Stack, M. V., Donoghue, H. D., and Tyler, J. E., 1978, Discrimination between oral streptococci by pyrolysis gas-liquid chromatography, Appl. Environ. Microbiol. 35:45.PubMedGoogle Scholar
  81. Stern, N. J., Kotula, A. W., and Pierson, M. D., 1979, Differentiation of selected Enterobacteriaceae by pyrolysis gas-liquid chromatography, Appl. Environ. Microbiol. 38:1098.PubMedGoogle Scholar
  82. Stern, N. J., Kotula, A. W., and Pierson, M. D., 1980, Virulence prediction of Yersinia enterocolitica by pyrolysis gas-liquid chromatography, Appl. Environ. Microbiol. 40:646.PubMedGoogle Scholar
  83. Stretton, R. J., Campbell, M., and Burns, D. T., 1976, Pyrolysis gas chromatography as an aid to the identification of Aspergillus species, J. Chrom. 129:321.Google Scholar
  84. Taylor, J. J., 1967, Ex vivo determination of pententially virulent Sporothrix schenkii, Mycopathologia. 58:107.Google Scholar
  85. Van de Meent, D., Brown, S. C., Philip, R. P., and Simoneit, B. R. T., 1980, Pyrolysis high-resolution gas chromatography and pyrolysis gas chromatography-mass spectrometry of kerogens and kerogen precursors, Geochim. Cosmochim. Acta 44:999.Google Scholar
  86. Van de Meent, D., De Leeuw, J. W., Schenck, P. A., Windig, W., and Haverkamp, J., 1982, Quantitative analysis of biopolymer mixtures by pyrolysis-mass spectrometry, J. Anal. Appl. Pyrolysis 4:133.Google Scholar
  87. Vincent, P. G., and Kulik, M. M, 1970, Pyrolysis gas-liquid chromatography of fungi: Differentiation of species and strains of several members of the Aspergillus flavus group, Appl. Microbiol. 20:957.PubMedGoogle Scholar
  88. Vincent, P. G., and Kulik, M. M., 1973, Pyrolysis gas-liquid chromatography of fungi: Numerical characterization of species variation among members of the Aspergillus glaucus group, Mycopath. Mycologia. Appl. 51:251.Google Scholar
  89. Walker, J. Q., 1977, Pyrolysis gas chromatograhpic correlation trials of the American Society for Testing and Materials, J. Chrom. Sci. 15:267.Google Scholar
  90. Wechsung, R., Hillenkamp, F., Kaufmann, R., Nitsche, R., and Vogt, H., 1978, LaserMikrosonden-Massen-Analysator, LAMMA: Ein neues Analysenverfahren für Forschung und Technologie, Mikroskopie 34:47.PubMedGoogle Scholar
  91. Wells, G., Voorhees, K. J., and Futrell, J. H., 1980, Heating profile curves for resistively heated filament pyrolysers, Anal. Chem. 52:1782.Google Scholar
  92. Wickman, K., 1977, Pyrolysis gas-liquid chromatography of mycobacteria, Acta Path. Microbiol. Scand. 259:49.Google Scholar
  93. Wieten, G., Haverkamp, J., Engel, H. W. B., and Tarnok, I., 1979, Pyrolysis Mass Spectrometry in Mycobacterial Taxonomy and Identification, in Twenty-Five Years of Mycobacterial Taxonomy (G. P. Kubica, L. G. Wayne, and L. S. Good, eds.), pp. 171–189, CDC. Press, Atlanta.Google Scholar
  94. Wieten, G., Haverkamp, J., Engel, H. W. B., and Berwald, L. G., 1981a, Application of pyrolysis mass spectrometry to the classification and identification of mycobacteria, Ref. Infect. Dis. 3:871.Google Scholar
  95. Wieten, G., Haverkamp, J., Meuzelaar, H. L. C., Engel, H. W. B., and Berwald, L. G., 1981b, Pyrolysis mass spectrometry: A new method to differentiate between the mycobacteria of the “Tuberculosis complex” and other mycobacteria, J. Gen. Microbiol. 122:109.PubMedGoogle Scholar
  96. Wieten, G., Haverkamp, J., Berwald, L. G., Groothuis, D. G. ,and Draper, P., 1982, Pyrolysis mass spectrometry: its applicability to mycobacteriology, including M. ieprae, Ann. Microbiol. 133B:15.Google Scholar
  97. Windig, W., and De Hoog, C. S., 1982, Pyrolysis mass spectrometry of selected yeast species, II, Sporidiobolus and relationships, Stud. Mycol. 22:60.Google Scholar
  98. Windig, W., Kistemaker, P. G., Haverkamp, J., and Meuzelaar, H. L. C., 1979, The effects of sample preparation, pyrolysis, and pyrolyzate transfer conditions on pyrolysis mass spectra, J. Anal. Appl. Pyrolysis 1:39.Google Scholar
  99. Windig, W., Kistemaker, P. G., Haverkamp, J., and Meuzelaar, H. L. C. ,1980, Factor analysis of the influence of changes in experimental conditions in pyrolysis-mass spectrometry, J. Anal. Appl. Pyrolysis 2:7.Google Scholar
  100. Windig, W., De Hoog, G. S., and Haverkamp, J., 1981a, Chemical characterization of yeasts and yeastlike fungi by factor analysis of their pyrolysis mass spectra, J. Anal. Appl. Pyrolysis 3:213.Google Scholar
  101. Windig, W., Kistemaker, P. G., and Haverkamp, J., 1981b, Chemical interpretation of differences in pyrolysis mass spectra of simulated mixtures of biopolymers by factor analysis with graphical rotation, J. Anal. Appl. Pyrolysis 3:199.Google Scholar
  102. Windig, W., Haverkamp, J., and Kistemaker, P. G., 1983, Chemical interpretation of sets of pyrolysis mass spectra by discriminant analysis and graphical rotation, Anal. Chem. 55:88.Google Scholar
  103. Wishart, D., 1978, Users manual CLUSTAN, Inter-University Res. Council Series, Rep. no. 47.Google Scholar
  104. Zemany, P. D., 1952, Identification of complex organic materials by mass spectrometric analysis of their pyrolysis products, Anal. Chem. 24:1709.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Gerhan Wieten
    • 1
  • Henk L. C. Meuzelaar
    • 2
  • Johan Haverkamp
    • 1
  1. 1.Department of Biomolecular PhysicsFOM-Institute for Atomic and Molecular PhysicsAmsterdamThe Netherlands
  2. 2.Biomaterials Profiling CenterUniversity of UtahSalt Lake CityUSA

Personalised recommendations