Quantitative Mass Spectrometry and Its Application in Microbiology

  • Göran Odham
  • Lennart Larsson
  • Per-Anders Mårdh


Advanced chemoanalytical techniques are now becoming introduced in microbiological laboratories, thereby adding new dimensions to traditional methods of studying microbial metabolic processes.


Muramic Acid Quantitative Mass Spectrometry Mass Fragmentography Mass Fragmentogram Complete Mass Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arpino, P. J., Baldwin, M. A., and McLafferty, F. W., 1974, Liquid chromatography-mass spectrometry. II. Continuous monitoring, Biomed. Mass Spectrom. 1:80.PubMedCrossRefGoogle Scholar
  2. Arpino, P. J., Krien, P., Vajta, S., and Devant, G., 1981, Optimization of the instrumental parameters of a combined liquid chromatograph-mass spectrometer, coupled by an interface for direct introduction. II. Nebulization of liquids by diaphragms. J. Chromatogr. 203:117.CrossRefGoogle Scholar
  3. Bengtsson, G., and Mårdh, P. A., 1978, The application of gas chromatography-mass spectrometry for detection of free amino acids in cultures of Mycoplasmatales and in tissue cell cultures contaminated by mycoplasmas, p. 127, Abstracts of the XIIth Int. Congress of Microbiology ,Munich, West Germany.Google Scholar
  4. Bengtsson, G., and Odharn, G., 1979, A micromethod for the analysis of free amino acids by gas chromatography and its application to biological systems, Anal. Biochem. 92:426.PubMedCrossRefGoogle Scholar
  5. Bengtsson, G., Odham, G., and Westerdahl, G., 1981, Glass capillary gas Chromatographic analysis of free amino acids in biological microenvironments using electron capture or selected ion-monitoring detection, Anal. Biochem. 111:163.PubMedCrossRefGoogle Scholar
  6. Bertilsson, L., and Costa, E. ,1976, Mass fragmentographic quantitation of glutamic acid and y-aminobutyric acid in cerebellar nuclei and sympathetic ganglia of rats, J. Chromatogr. 118:395.PubMedCrossRefGoogle Scholar
  7. Coutts, R. T., Jones, G. R., and Liu, S. F. ,1979, Quantitative gas chromatography-mass spectrometry of trace amounts of glutamic acid in water samples, J. Chromatogr. Sci. 17:551.Google Scholar
  8. deLeenheer, A. D., and Cruyl, A. A., 1980, “Quantitative Mass Spectrometry,” in Biochemical Applications of Mass Spectrometry first supplementary volume (G. R. Waller, and O. C. Dermer, eds.), p. 1169, John Wiley and Sons, New York.Google Scholar
  9. Dutton, G. G. S., 1973, Application of gas-liquid chromatography to carbohydrates, Adv. Carbohyd. Chem. Biochem. 28:11.CrossRefGoogle Scholar
  10. Dutton, G. G. S., 1974, Application of gas-liquid chromatography to carbohydrates. II, Adv. Carbohyd. Chem. Biochem. 30:10.Google Scholar
  11. Erdahl, W. L., and Privett, O. S., 1977, A new system for lipid analysis by liquid chromatography-mass spectrometry, Lipids 22:797.CrossRefGoogle Scholar
  12. Falkner, F. C., Sweetman, B. J., and Watson, J. T., 1975, Biomedical applications of selected ion monitoring, Appl. Spectrosc. Rev. 10:51.CrossRefGoogle Scholar
  13. Fischer-Hoch, S., Hudson, M. J., and Thompson, M. H., 1979, Identification of a clinical isolate as Legionella pneumophila by gas chromatography and mass spectrometry of cellular fatty acids, Lancet 8138:323.CrossRefGoogle Scholar
  14. Fox, A., Schwab, J. H., and Cochran, T., 1980, Muramic acid detection in mammalian tissues by gas liquid chromatography-mass spectrometry, Infection and Immunity 29:526.PubMedGoogle Scholar
  15. Hammar, C. G., Holmstedt, B., and Ryhage, R., 1968, Mass fragmentography. Identification of chloropromazine and its metabolites in human blood by a new method, Anal. Biochem. 25:532.PubMedCrossRefGoogle Scholar
  16. Hintze, U., Röper, H., and Gercken, G., 1963, Gas chromatography-mass spectrometry of Q-C20 fatty acid benzyl esters. J. Chromatog. 87:481.CrossRefGoogle Scholar
  17. Kaiser, F. E., Gehrke, C. W., Zumwalt, R. W., and Kuo, K. C., 1974, Amino acid analysis. Hydrolysis, ion-exchange clean up, derivatization, and quantitation by gas-liquid chromatography, J. Chromatog. 94:113.CrossRefGoogle Scholar
  18. Klem, H. P., Hintze, U., and Gercken, G., 1973, Quantitative preparation and gas chromatography of short and medium chain fatty acid benzyl esters (C1-C22), J Chromatog. 75:19.CrossRefGoogle Scholar
  19. Kraska, B., Klemer, A., and Hagedorn, H., 1974, Umsetzung von Kohlenhydraten mit tert-Butylchlordimethylsilan, Carbohyd. Res. 36:398.CrossRefGoogle Scholar
  20. Kuksis, A., Myher, J. J., Marai, L., and Geher, K., 1976, Estimation of plasma free fatty acids as the trimethylsilyl (TMS) esters, Anal. Biochem. 70:302.PubMedCrossRefGoogle Scholar
  21. Larsson, L., Mårdh, P. A., Odham, G., and Westerdahl, G., 1980, Detection of tuberculostearic acid in biological specimens by means of glass capillary gas chromatographyelectron and chemical ionization mass spectrometry, utilizing selected ion monitoring, J. Chromatog. Biomed. Appl. 182:402.CrossRefGoogle Scholar
  22. Larsson, L., Mårdh, P. A., Odham, G., and Westerdahl, G., 1981, Use of selected ion monitoring for detection of tuberculostearic and C32-mycocerosic acid in mycobacteria and in five-day-old cultures of sputum specimens from patients with pulmonary tuberculosis, Acta Pathol. Microbiol. Scand., Sect. B. 89:245.Google Scholar
  23. Leimer, K. R., Rise, R. H., and Gehrke, C. W., 1977, Complete mass spectra of N- trifluoroacetyl-nbutyl esters of amino acids, J. Chromatog. 141:121.CrossRefGoogle Scholar
  24. McFadden, W. H., Bradford, D. C., Games, D. E., and Gower, J. L., 1977, Applications of combined liquid chromatography-mass spectrometry, Am. Lab. October 55.Google Scholar
  25. McLafferty, F. W., and Baldwin, M. A., 1976, Liquid chromatography-mass spectrometry system and method. US Pat. 3,997,298.Google Scholar
  26. Maitra, S. K., Scholz, M. C., Yoshikawa, T. T., and Guze, L. B., 1978, Determination of lipid A and endotoxin in serum by mass spectroscopy, Proc. Natl. Acad. Sci. USA 75: 3993.PubMedCrossRefGoogle Scholar
  27. March, J. F., 1975, A modified technique for the quantitative analysis of amino acids by gas chromatography using heptafluorobutyric n-propyl derivatives, Anal. Biochem. 69:420.PubMedCrossRefGoogle Scholar
  28. Mårdh, P.-A., Larsson, L., Odham, G., and Engbaek, H. C., 1983, Tuberculostearic acid as a diagnostic marker in tuberculous meningitis, Lancet 1:367.PubMedCrossRefGoogle Scholar
  29. Markey, S. P., 1974, in Applications of Gas Chromatography-Mass Spectrometry to the Investigation of Human Disease (O. A. Mamer, W. J. Mitchell, and C. R. Scriver, eds.), p. 239, McGill University, Montreal Childrens Hospital Research Institute, Montreal.Google Scholar
  30. Matthews, D. E., Ben-Galim, E., and Bier, D. M., 1979, Determination of stable isotopic enrichment in individual plasma amino acids by chemical ionization mass spectrometry, Anal. Chem. 51:80.PubMedCrossRefGoogle Scholar
  31. Mee, J. M. L., Korth, J., and Halpern, B., 1976, Rapid and quantitative blood analysis for free fatty acids by chemical ionization mass spectrometry, Anal. Lett. 9:1075.CrossRefGoogle Scholar
  32. Millard, B. J., 1979, Quantitative Mass Spectrometry ,Heyden, London.Google Scholar
  33. Odham, G., Larsson, L., and Mårdh, P. A., 1979, Demonstration of tuberculostearic acid in sputum from patients with pulmonary tuberculosis by selected ion monitoring, J. Clin. Invest. 63:813.PubMedCrossRefGoogle Scholar
  34. Petty, F., Tucker, H. N., Molinary, S. V., Flynn, M. W., and Wanter, J. D., 1976, Quantitation of glycine in plasma and urine by chemical ionization mass fragmentography, Clin. Chim. Acta 66:111.PubMedCrossRefGoogle Scholar
  35. Phillipou, G., Bigham, D. A., and Seamark, R. F., 1975, Subnanogram detection of t- butyldimethylsilyl fatty acid esters by mass fragmentography, Lipids 10:714.PubMedCrossRefGoogle Scholar
  36. Radford, T., and deJongh, D. C., 1980, “Carbohydrates,” in Biochemical Applications of Mass Spectrometry (G. R. Waller, and O. C. Dermer, eds.), p. 255, John Wiley and Sons, New York.Google Scholar
  37. Roboz, J., Suzuki, R., and Holland, J. F., 1980, Quantification of arabinitol in serum by selected ion monitoring as a diagnostic technique in invasive Candidiasis, J. Clin. Microbiol. 12:594.PubMedGoogle Scholar
  38. Scott, R. P. W., Scott, G. G., Munroe, M., and Hess, J., Jr., 1974, Interface for on-line liquid chromatography-mass spectrometry analysis, J. Chromatog. 99:395.CrossRefGoogle Scholar
  39. Sjöqvist, B., and Änggård, E., 1972, Gas Chromatographic determination of homovanillic acid in human cerebrospinal fluid by electron capture detection and by mass fragmentography with a deuterated internal standard, Anal. Chem. 44:2297.CrossRefGoogle Scholar
  40. Solovyov, A. A., Kadentsev, V. I., and Chizhov, O. S., 1976, Izv. Akad. Nauk. Arm. SSR, Khim. Nauki ,2256; Chem Abstr. 86, 106974 m (1977).Google Scholar
  41. Sweeley, C. C., Elliott, W. H., Fries, I., and Ryhage, R., 1966, Mass spectrometric determination of unresolved components in gas Chromatographic effluents, Anal. Chem. 38:1549.PubMedCrossRefGoogle Scholar
  42. Tunlid, A., and Odham, G., 1983, Capillary gas chromatography using electron capture or selected ion monitoring detection for the determination of muramic acid, diaminopimelic acid and the ratio of d/lalanine in bacteria. J. Microbiol. Methods. ,in press.Google Scholar
  43. Vetter, W., 1980, “Amino Acids”, in Biochemical Applications of Mass Spectrometry (G. R. Waller, and O. C. Dermer, eds.), p. 439, John Wiley and Sons, New York.Google Scholar
  44. Vilkas, M., Jan, H. I., Boussac, G., and Bonnard, M. C., 1966, Chromatographic en phase vapeur de sucres a L’etat de trifluoroacetates, Tetrahedron Lett. 1441.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Göran Odham
    • 1
  • Lennart Larsson
    • 2
  • Per-Anders Mårdh
    • 2
  1. 1.Laboratory of Ecological ChemistryUniversity of LundLundSweden
  2. 2.Department of Medical MicrobiologyUniversity of LundLundSweden

Personalised recommendations