Changes in Hypothalamic Hypophysiotropic Hormones and Neurotransmitters during Aging

  • James W. Simpkins


It is well established that the central nervous system (CNS) regulates anterior pituitary (AP) function by the production of releasing hormones and release-inhibiting hormones from specialized neurosecretory cells in the hypothalamus. These neurohormones are secreted into the vicinity of the primary capillary plexus of the portal vascular system for delivery to the AP. These secretory neurons are, in turn, under the regulatory influence of afferent neuronal inputs to the hypothalamus and from peripheral hormones secreted by AP hormone target tissues.


Luteinizing Hormone Estrous Cycle Medial Preoptic Area Medial Basal Hypothalamus Peromyscus Leucopus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annunziato, L., and Moore, K. E., 1978, Prolactin in CSF selectivity increases dopamine turnover in the median eminence, Life Sci. 22: 2037–2042.PubMedGoogle Scholar
  2. Barden, N., Dupont, A., Labric, F., Merand, Y., Rouleau, D., Vandry, H., and Biossier, J. R., 1981, Age-dependent changes in the β-endorphin content of discrete rat brain nuclei, Brain Res. 208: 209–212.PubMedGoogle Scholar
  3. Barnea, A., Cho, G., and Porter, J. C., 1980, Effect of aging on the subneuronal distribution of luteinizing hormone-releasing hormone in the hypothalamus, Endocrinology 106: 1980–1988.PubMedGoogle Scholar
  4. Barraclough, C. A., and Sawyer, C. H., 1955, Inhibition of the release of pituitary ovulatory hormone in the rat by morphine, Endocrinology 57: 329–336.PubMedGoogle Scholar
  5. Bazzarre, T. L., Johanson, A. J., Huseman, C. A., Varma, M. M., and Blizzard, R. M., 1976, Human growth hormone changes with age, in: Growth Hormone and Related Peptides ( A. Pecile and E. E. Muller, eds.), Excerpta Medica, Amsterdam, pp. 261–270.Google Scholar
  6. Beaudet, A., and Descarries, L., 1979, Radioautographic characterization of a serotonin- accumulating nerve cell group in adult rat hypothalamus, Brain Res. 160: 231–243.PubMedGoogle Scholar
  7. Bertler, A., 1961, Occurrence and localization of catecholamines in the human brain, Acta Physiol. Scand. 51: 97–107.Google Scholar
  8. Bjorklund, A., Moore, R. Y., Nobin, A., and Stenevi, U., 1973, The organization of tuberohypophyseal and reticulo-infundibular catecholamine neuron systems in the rat brain, Brain Res. 51: 171–191.PubMedGoogle Scholar
  9. Bjorklund, A., Lindvall, O., and Nobin, A., 1975, Evidence of an incertohypothalamic dopamine neuron system in the rat, Brain Res. 89: 29–42.PubMedGoogle Scholar
  10. Blichert-Toft, M., 1975, Secretion of corticotrophin and somatotrophin by the senescent adenohypophysis in man, Acta Endocrinol. 78: 1–157.Google Scholar
  11. Bloom, F., Battenberg, E., Rosier, J., Ling, N., and Guillemin, R., 1978, Neurons containing 13-endorphin in rat brain exist separately from those containing enkephalin. Immunocytochemical studies, Proc. Natl. Acad. Sci. USA 75: 1591–1595.PubMedGoogle Scholar
  12. Bowers, M. B., and Gerbode, R. A., 1968, Relationship of monoamine metabolites in human cerebrospinal fluid to age, Nature 219: 1256–1257.PubMedGoogle Scholar
  13. Bradbury, A., Smyth, D. G., and Snell, C. R., 1976, The peptide hormones: Molecular and cellular aspects, Ciba Found. Symp. 41: 61–75.PubMedGoogle Scholar
  14. Carlson, H. E., Gillin, J. C., Gorden, P., and Synder, F., 1972, Absence of sleep related growth hormone peaks in aged normal subjects and acromegaly, J. Clin. Endocrinol. Metabol. 34: 1102–1105.Google Scholar
  15. Clemens, J. A., and Bennett, D. R., 1977, Do aging changes in the preoptic area contribute to loss of cyclic endocrine function? J. Gerontol. 32: 19–24.PubMedGoogle Scholar
  16. Clemens, J. A., and Meites, J., 1971, Neuroendocrine status of old constant-estrous rats, Neuroendocrinology 7: 249–256.PubMedGoogle Scholar
  17. Clemens, J. A., Amenomori, Y., Jenkins, T., and Meites, J., 1969, Effects of hypothalamic stimulation, hormones, and drugs on ovarian function in old female rats, Proc. Soc. Exp. Biol. Med. 132: 561–563.PubMedGoogle Scholar
  18. Clemens, J. A., Fuller, R. W., and Owen, N. V., 1979, Some neuroendocrine aspects of aging, in: Advances in Experimental Medicine and Biology, Vol. 113, Parkinson’s Disease-II ( C. E. Finch, D. E. Potter, and A. D. Kenny, eds.), Plenum Press, New York, pp. 77–100.Google Scholar
  19. Cooper, J. R., Bloom, F. E., and Roth, R. H., 1978, The Biochemical Basis of Neuro-pharmacology, 3rd Ed., Oxford University Press, New York.Google Scholar
  20. Cooper, R. L., Brandt, S. J., Linnoila, M., and Walker, R. F., 1979, Induced ovulation in aged female rats by c-Dopa implants into the medial preoptic area, Neuroendocrinology 28: 234–240.PubMedGoogle Scholar
  21. Cote, L. J., and Kremzner, L. T., 1975, Changes in neurotransmitter systems with increasing age in human brain, Trans. Am. Soc. Neurochem. 5: 83.Google Scholar
  22. Dahlstrom, A., and Fuxe, K., 1964, Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. (Suppl. 232) 62: 1–55.Google Scholar
  23. Demarest, K. T., Riegle, G. D., and Moore, K. E., 1980, Characteristics of dopaminergic neurons in the aged male rat, Neuroendocrinology 31: 222–227.PubMedGoogle Scholar
  24. Demarest, K. T., Moore, K. E., and Riegle, G. D., 1981, Aging influences tuberoinfundibular dopamine neurons and anterior pituitary dopamine content in the female rat, Fed. Proc. 40: 509A.Google Scholar
  25. Dilman, V. M., 1971, Age-associated elevation of hypothalamic threshold to feedback control, and its role in development, aging and disease, Lancet 1: 1211–1219.PubMedGoogle Scholar
  26. Dudl, R. J., Ensinck, J. W., Palmer, H. E., and Williams, R. H., 1973, Effect of age on growth hormone secretion in man, J. Clin. Endocrinol. Metabol. 37: 11–16.Google Scholar
  27. Estes, K. S., and Simpkins, J. W., 1980, Age-related alterations in catecholamine concentrations in discrete preoptic area and hypothalamic regions in the male rat, Brain Res. 194: 556–560.PubMedGoogle Scholar
  28. Estes, K. S., and Simpkins, J. W., 1981, Catecholamine levels and activity change at different rates in discrete brain regions of aging female rats, Fed. Proc. (Abst.) 40: 509.Google Scholar
  29. Estes, K. S., and Simpkins, J. W., 1982, Catecholamine activities and concentrations within discrete brain regions are differently altered with advancing age in ovariectomized Long-Evans rats, Proc. 64th Annu. Meeting of the Endocrine Soc., San Francisco, Abstract No. 571.Google Scholar
  30. Estes, K. S., Simpkins, J. W., and Chen, C. L., 1980, Alteration in pulsatile release of LH in aging female rats, Proc. Soc. Exp. Biol. Med. 163: 384–387.PubMedGoogle Scholar
  31. Estes, K. S., Simpkins, J. W., and Kalra, S. P., 1981, Effects of advancing age and ovariectomy on LHRH concentrations in discrete preoptic area and hypothalamic regions of the rat, Endocrinology 109: 201A.Google Scholar
  32. Everett, J. W., 1939, Spontaneous persistent estrus in a strain of albino rats, Endocrinology 25: 123–127.Google Scholar
  33. Everett, J. W., 1940, The restoration of ovulatory cycles and corpus luteum formation in persistent-estrous rats by progesterone, Endocrinology 27: 681–686.Google Scholar
  34. Everitt, A. V., 1980, The neuroendocrine system in aging, Gerontology 26: 108–119.PubMedGoogle Scholar
  35. Finch, C. E., 1973, Catecholamine metabolism in the brains of aging male mice, Brain Res. 52: 271–276.Google Scholar
  36. Finch, C. E., 1979, Age-related changes in brain catecholamines: A synopsis of findings in C57BL16J mice and other rodent models, in: Advances in Experimental Medicine and Biology, Parkinson’s Disease-II, Vol. 113 ( C. E. Finch, D. E. Potter, and A. D. Kenny, eds.), Plenum Press, New York, pp. 15–40.Google Scholar
  37. Finkelstein, J. W., Roffwarg, H. P., Boyer, R. M., Kream, J., and Hellman, I., 1972, Age-related change in the twenty-four-hour spontaneous secretion of growth hormone, J. Clin. Endocrinol. Metabol. 35: 665–670.Google Scholar
  38. Forman, L. J., Sonntag, W. E., Miki, N., and Meites, J., 1980, Maintenance by L-Dopa treatment of estrous cycles and LH response to estrogen in aging female rats, Exp. Aging Res. 6: 547–554.PubMedGoogle Scholar
  39. Forman, L. J., Sonntag, W. E., Van Vugt, D. A., and Meites, J., 1981, Immunoreactive ß-endorphin in the plasma, pituitary and hypothalamus of young and old male rats, Neurobiol. Aging 2: 281–284.PubMedGoogle Scholar
  40. Fuxe, K., Eneroth, P., Gustafason, L. A., and Skeet, P., 1977, Dopamine in the nucleus accumbens: Preferential increase of DA turnover by rat prolactin, Brain Res. 122: 177–182.PubMedGoogle Scholar
  41. Gambert, S. R., Garthwaite, T. L., Pontzer, C. H., and Hagen, T. C., 1980, Age-related changes in central nervous system beta-endorphin and ACTH, Neuroendocrinology 31: 252–255.PubMedGoogle Scholar
  42. Goldstein, A., Tachibana, S., Lowney, L. I., Humkapiller, M., and Hood, L., 1979, Dy. norphin-(1–13), an extraordinary potent opioid peptide, Proc. Soc. Natl. Acad. Sci. USA 76: 6666–6670.Google Scholar
  43. Gordon, W. C., Scobie, S. R., and Franki, S. E., 1978, Age-related differences in electric shock detection and escape thresholds in Sprague-Dawley albino rats, Exp. Aging Res. 4: 23–25.PubMedGoogle Scholar
  44. Gottfries, C. G., Gottfries, I., Johansson, R., Olsson, R., Persson, T., Roos, B. E., and Jostrom, R., 1971, Acid monoamine metabolites in human cerebrospinal fluid and their relations to age and sex, Neuropharmacology 10: 665–672.PubMedGoogle Scholar
  45. Gudelsky, G. A., Simpkins, J. W., Mueller, G. P., Meites, J., and Moore, K. E., 1976, Selective actions of prolactin on catecholamine turnover in the hypothalamus and on serum LH and FSH, Neuroendocrinology 22: 206–215.PubMedGoogle Scholar
  46. Gudelsky, G. A., Nansel, D. D., and Porter, J. C., 1981, Dopaminergic control of prolactin secretion in the aging male rat, Brain Res. 204: 446–450.PubMedGoogle Scholar
  47. Guillemin, R., Ling, N., and Burgus, R., 1976, Endorphines, peptides, d’origine hypothalamique et neurophysaire activité morphinomimétique. Isolement et structure moléculaire de l’endorphin, C. R. Acad. Sci. Ser. D 282: 783–785.Google Scholar
  48. Hess, G. D., Joseph, J. A., and Roth, G. S., 1981, Effects of age on sensitivity to pain and brain opiate receptors, Neurobiol. Aging 2: 49–55.PubMedGoogle Scholar
  49. Hoffman, G. E., and Sladek, J. R., Jr., 1980, Age-related changes in dopamine, LHRH and somatostatin in the rat hypothalamus, Neurobiol. Aging 1: 27–37.PubMedGoogle Scholar
  50. Hohn, K. G., and Wuttke, W. O., 1978, Changes in catecholamine turnover in the anterior part of the mediobasal hypothalamus and the medial preoptic area in response to hyperprolactinemia in ovariectomized rats, Brain Res. 156: 241–252.PubMedGoogle Scholar
  51. Hökfelt, T., and Fuxe, K., 1972a, Brain endocrine interaction: On the morphology and the neuroendocrine role of hypothalamus catecholamine neurons, in: Median Eminence, Structure and Function ( M. Knigge, E. E. Scott, and A. Weindle, eds.), Karger, Basel, pp. 181–223.Google Scholar
  52. Hokfelt, T., and Fuxe, K., 1972b, Effects of prolactin and ergot alkaloids on the tuberoinfundibular dopamine (DA) neurons, Neuroendocrinology 4: 100–122.Google Scholar
  53. Howland, B. E., 1976, Reduced gonadotropic release in response to progesterone or gonadotropin releasing hormone (GnRH) in old female rats, Life Sci. 19: 219–224.PubMedGoogle Scholar
  54. Huang, H. H., and Meites, J., 1975, Reproductive capacity of aging female rats, Neuroendocrinology 17: 289–295.PubMedGoogle Scholar
  55. Huang, H. H., Marshall, S., and Meites, J., 1976a, Capacity of old vs. young female rats to secrete LH, FSH and prolactin, Biol. Reprod. 14: 538–543.PubMedGoogle Scholar
  56. Huang, H. H., Marshall, S., and Meites, J., 1976b, Induction of estrous cycles in old non-cyclic rats by progesterone, ACTH, ether stress or L-DOPA, Neuroendocrinology 20: 21–34.PubMedGoogle Scholar
  57. Huang, H. H., Simpkins, J. W., and Meites, J., 1977, Hypothalamic norepinephrine (NE) and dopamine (DA) turnover and relation to LH, FSH and prolactin release in old female rat, Endocrinology (Suppl.) 100: 331.Google Scholar
  58. Huang, H. H., Steger, R. W., Bruni, J. F., and Meites, J., 1978, Patterns of sex steroid and gonadotropin secretion in aging female rats, Endocrinology 100: 1855–1859.Google Scholar
  59. Huang, H. H., Steger, R. W., Sonntag, W. E., and Meites, J., 1980a, Positive feedback by ovarian hormones on prolactin and LH in old vs. young female rats, Neurobiol. Aging 1: 141–143.Google Scholar
  60. Huang, H. H., Steger, R. W., and Meites, J., 1980b, Capacity of old vs. young male rats to release thyrotropic (TSH), thyroxine (T4) and triiodothyronine (Ts) in response to different stimuli, Exp. Aging Res. 6: 3–12.PubMedGoogle Scholar
  61. Hughes, J., Smith, T. W., Kosterlitz, W. H., Fothergill, L., Morgan, B. A., and Morris, H. R., 1975, Identification of two related pentapeptides from the brain with potent opiate agonist activity, Nature 285: 577–579.Google Scholar
  62. Kalra, P. S., Simpkins, J. W., and Kalra, S. P., 1981, Hyperprolactinemia counteracts the testerone-induced inhibition of the preoptic area dopamine turnover, Neuroendocrinology 33: 118–122.PubMedGoogle Scholar
  63. Kizer, J. S., Palkovitz, M., and Brownstein, M. J., 1976, The projections of the A8, A9 and A10 dopaminergic cell bodies: Evidence for a nigro-hypothalamic-median eminence dopaminergic pathway, Brain Res. 108: 363–370.PubMedGoogle Scholar
  64. Kizer, J. S., Memeroff, C. B., and Youngblood, W. W., 1978, Neurotoxic amino acids and structurally related analogs, Pharmacol. Rev. 29: 301–318.Google Scholar
  65. Klug, T. L., and Adelman, R. C., 1979, Altered hypothalamic-pituitary regulation of thyrotropin in male rats during aging, Endocrinology 104: 1136–1142.PubMedGoogle Scholar
  66. Kumar, M. S. A., Chen, C. L., and Huang, H. H., 1980, Pituitary and hypothalamic concentrations of met-enkephalin in young and old rats, Neurobiol. Aging 1: 153–155.Google Scholar
  67. Larsson, L., Childers, S., and Synder, S. H., 1979, Met-and len-enkephalin immunoreactivity in separate neurons, Nature 282: 407–410.PubMedGoogle Scholar
  68. Linnoila, M., and Cooper, R. L., 1976, Reinstatement of vaginal cycles in aged female rats, J. Pharm. Exp. Ther. 199: 477–482.Google Scholar
  69. Lippa, A. S., Pelham, R. W., Beer, B., Critchett, D. J., Dean, R. L., and Bartus, R. T., 1980, Brain cholinergic dysfunction and memory in aged rats, Neurobiol. Aging 1: 13–19.PubMedGoogle Scholar
  70. Lu, K. H., Huang, H. H., Chen, H. T., Kurcz, M., Mioduszewski, R., and Meites, J., 1977, Positive feedback by estrogen and progesterone on LH release in old and young rats, Proc. Soc. Exp. Biol. Med. 154: 82–85.PubMedGoogle Scholar
  71. Lu, J. K. H., Damassa, D. A., Gilman, D. P., Judd, H. L., and Sayer, C. H., 1980, Differential patterns of gonadotropin responses to ovarian steroids and to LH-releasing hormone between constant-estrous and pseudopregnant states in aging rats, Biol. Reprod. 23: 345–351.PubMedGoogle Scholar
  72. Lu, J. K. H., Gilman, D. P., Meldrum, D. R., Judd, H. L., and Saywer, C. H., 1981, Relationship between circulating estrogens and the central mechanism by which ovarian steroids stimulate luteinizing hormone secretion in aged and young female rats, Endocrinology 108: 836–841.PubMedGoogle Scholar
  73. Masuoka, D. T., Jonsson, G., and Finch, C. E., 1979, Aging and unusual catecholaminecontaining structures in the mouse brain, Brain Res. 169: 335–341.PubMedGoogle Scholar
  74. McGeer, E. G., Fibiger, H. C., McGeer, P. L., and Wickson, V., 1971, Aging and brain enzymes, Exp. Gerontol. 6: 391–396.PubMedGoogle Scholar
  75. Mek, J. L., Bertilsson, L., Cheney, D. L., Zsilla, G., and Costa, E., 1977, Aging induced changes in acetylcholine and serotonin content of discrete brain nuclei, J. Gerontol. 32: 129–131.Google Scholar
  76. Meites, J., Huang, H. H., and Simpkins, J. W., 1978, Recent studies on neuroendocrine control of reproductive senescence in rats, in: Aging, Vol. 4, The Aging Reproductive System ( E. L. Schneider, ed.), Raven Press, New York, pp. 213–235.Google Scholar
  77. Meites, J., Bruni, J., Van Vugt, D. A., and Smith, A. F., 1979, Relation of endogenous opioid peptides and morphine to neuroendocrine function, Life Sci. 24: 1325–1336.PubMedGoogle Scholar
  78. Messing, R. B., Vasquez, B. J., Spiehler, V. R., Martinez, J. L., Nensen, R. A., Rigter, H., and McGaugh, J. L., 1980, 3H-dihydromorphine binding in brain regions of young and aged rats, Life Sci. 26: 921–927.Google Scholar
  79. Messing, R. B., Vasquez, B. J., Samaniego, B., Jensen, R. A., Martinez, J. L., and McGaugh, J. L., 1981, Alterations in dihydromorphine binding in cerebral hemispheres of aged male rats, J. Neurochem. 36: 784–790.PubMedGoogle Scholar
  80. Miller, A. E., and Riegle, G. D., 1978, Hypothalamic LH-releasing activity in young and aged intact and gonadectomized rats, Exp. Aging Res. 4: 145–155.PubMedGoogle Scholar
  81. Miller, A. E., Shaar, C. J., and Reigle, G. D., 1976, Aging effects on hypothalamic dopamine and norepinephrine content in the male rat, Exp. Aging Res. 2: 475–480.PubMedGoogle Scholar
  82. Moore, R. Y., and Bloom, F. E., 1978, Central catecholamine neuron systems: Anatomy and physiology of the dopamine system. Annu. Rev. Neurosci. 1: 129–169.PubMedGoogle Scholar
  83. Moore, R. Y., and Bloom, F. E., 1979, Central catecholamine neuron systems: Anatomy and physiology of the norepinephrine and epinephrine systems, Annu. Rev. Neurosci. 2: 113–168.PubMedGoogle Scholar
  84. Morgan, W. W., and Herbert, D. C., 1980, Early responses of the dopaminergic tuberoinfundibular neurons to anterior pituitary homografts, Neuroendocrinology 31: 212–215.Google Scholar
  85. Nicak, A., 1971, Changes of sensitivity to pain in relation to postnatal development in rats, Exp. Gerontol. 6: 111–114.PubMedGoogle Scholar
  86. Nilsen, P. L., 1961, Studies on algesimetry by electrical stimulation of the mouse tail, Acta Pharmacol. Tox. 18: 10–22.Google Scholar
  87. Olson, L., Fuxe, K., and Hökfelt, T., 1972, The effects of pituitary transplants on the tuberoinfundibular dopamine neurons in various endocrine states, Acta Endocrinol. 71: 233–244.PubMedGoogle Scholar
  88. Pare, W. P., 1969, Age, sex, and strain differences in the aversive threshold to grid shock in the rat, J. Comp. Physiol. Psychol. 69: 214–218.PubMedGoogle Scholar
  89. Pecile, A., Müller, E., Falconi, G., and Martini, L., 1965, Growth hormone releasing activity of hypothalamic extracts at different ages, Endocrinology 77: 241–246.PubMedGoogle Scholar
  90. Peluso, J. J., Steger, R. W., and Hafez, E. S. E., 1977, Regulation of LH secretion in aged female rats, Biol. Reprod. 16: 212–215.PubMedGoogle Scholar
  91. Perkins, N., and Westfall, T., 1978, Effects of prolactin on dopamine release from rat striatum and medial basal hypothalamus, Neuroscience 3: 59–63.Google Scholar
  92. Perkins, N. A., Westfall, T. C., Paul, C. V., MacLeod, R., and Rogol, A. D., 1979, Effect of prolactin on dopamine synthesis in medial basal hypothalamus: Evidence for a short loop feedback, Brain Res. 160: 431–444.PubMedGoogle Scholar
  93. Ponzio, F., Brunell, N., and Algeri, S., 1978, Catecholamine synthesis in the brain of aging rats, J. Neurochem. 30: 1617–1620.PubMedGoogle Scholar
  94. Quadri, S. K., Kledzik, G. S., and Meites, J., 1973, Reinitiation of estrous cycles in old constant estrous rats by central acting drugs, Neuroendocrinology 11: 248–255.PubMedGoogle Scholar
  95. Reis, D. J., Ross, R. A., and Joh, T. H., 1977, Changes in the activity and amounts of enzymes synthesizing catecholamines and acetylcholine in brain, adrenal medulla, and sympathetic ganglia of aged rat and mouse, Brain Res. 136: 465–474.PubMedGoogle Scholar
  96. Riegle, G. D., Meites, J., Miller, A. E., and Wood, S. M., 1977, Effects of aging on hypothalamic LH-releasing and prolactin inhibiting activities and pituitary responsiveness to LHRH in the male laboratory rat, J. Gerontol. 32: 13–18.PubMedGoogle Scholar
  97. Robinson, D. S., Nies, A., Davis, J. M., Bunney, W. E., Davies, J. M., Colburn, R. W., Bourne, H. R., Shaw, D. M., and Copper, A. J., 1972, Aging, monoamines and monoamine oxidase, Lancet 1: 290–291.PubMedGoogle Scholar
  98. Sacher, G. A., and Hart, R. W., 1978, Longevity, aging and comparative cellular and molecular biology of the house mouse, Mus imusculus and the white-footed mouse, Peromyscus leucopus, Birth Defects 14: 71–96.PubMedGoogle Scholar
  99. Saiduddin, S., and Zassenhaus, P., 1979, Estrous cycles, decidual cell response and uterine estrogen and progesterone receptors in Fischer 344 virgin aging rats, Proc. Soc. Exp. Biol. Med. 161: 119.PubMedGoogle Scholar
  100. Sakensa, S. K., and Lau, I. F., 1979, Variations in serum androgens, estrogens, progestins, gonadotropins and prolactin levels in male rats from prepubertal to advanced age, Exp. Aging Res. 5: 179–194.Google Scholar
  101. Samorajski, T., 1975, Age-related changes in brain biogenic amines, in: Aging, Vol. I: Clinical, Morphological and Neurochemical Aspects in the Aging Central Nervous System ( H. Brody, D. Harman, and J. M. Ordy, eds.), Raven Press, New York, pp. 199–214.Google Scholar
  102. Samorajski, T., and Rolsten, C., 1973, Age and regional differences in the chemical composition of brains of mice, monkeys and humans, in: Progress in Brain Research, Vol. 40: Neurobiological Aspects of Maturation and Aging ( D. H. Ford, ed.), Elsevier Press, New York, pp. 253–265.Google Scholar
  103. Samorajski, T., Rolsten, C., and Ordy, J. M., 1971, Changes in behavior, brain and neuroendocrine chemistry with age and stress in C57BL/10 male mice, J. Gerontol. 26: 168–175.PubMedGoogle Scholar
  104. Santen, R. J., Sofsky, J., Bilic, N., and Lippert, R., 1975, Mechanism of action of narcotics in the production of menstrual dysfunction in women, Fert. Ster. 26: 538–548.Google Scholar
  105. Selmonoff, 1981, The lateral and medial median eminence: Distribution of dopamine, norepinephrine and luteinizing hormone-releasing hormone and the effect of prolactin on catecholamine turnover, Endocrinology 108: 1716–1722.Google Scholar
  106. Shaar, C. J., Euker, J. S., Riegle, G. D., and Meites, J., 1975, Effects of castration and gonadal steroids on serum luteinizing hormone and prolactin in old and young rats, J. Endocrinol. 66: 45–51.PubMedGoogle Scholar
  107. Simantov, R., and Synder, S. H., 1976, Morphine-like factors in mammalian brain: Structure elucidation and interaction with opiate receptor, Proc. Natl. Acad. Sci. USA 73: 2515–2519.PubMedGoogle Scholar
  108. Simpkins, J. W., Mueller, G. P., Huang, H. H., and Meites, J., 1977, Evidence for depressed catecholamine and enhanced serotonin metabolism in aging male rats: possible relation to gonadotropin secretion, Endocrinology 100: 1672–1678.PubMedGoogle Scholar
  109. Simpkins, J. W., Hodson, C. A., and Meites, J., 1978, Differential effects of stress on release of thyroid-stimulating hormone in young and old male rats, Proc. Soc. Exp. Biol. Med. 157: 144–147.PubMedGoogle Scholar
  110. Simpkins, J. W., Estes, K. S., Kalra, P. S., and Kalra, S. P., 1979, Age-related alterations in catecholamines and LHRH concentrations in brain nuclei of the male rate, in: Endocrine Aspects of Aging ( S. G. Koreman, ed.), NIH Publication, Bethesda (Abst.).Google Scholar
  111. Simpkins, J. W., Hodson, C. A., Kalra, P. S., and Kalra, S. P., 1982, Chronic hyperprolactinemia depletes hypothalamic dopamine concentrations in male rats, Life Sci. 30: 1349–1353.PubMedGoogle Scholar
  112. Snyder, S. H., 1980, Brain peptides as neurotransmitters, Science 209: 976–983.PubMedGoogle Scholar
  113. Sonntag, W. E., Steger, R. W., Forman, L. J., and Meites, J., 1980, Decreased pulsatile release of growth hormone in old male rats, Endocrinology 107: 1875–1879.PubMedGoogle Scholar
  114. Sonntag, W. E., Steger, R. W., Forman, L. J., Meites, J., and Arimura, A., 1981, Effects of CNS active drugs and somatostatin on growth hormone release in young and old male rats, Neuroendocrinology 33: 73–78.PubMedGoogle Scholar
  115. Steger, R. W., Huang, H. H., and Meites, J., 1979, Relation of aging to hypothalamic LHRH content and serum gonadal steroids in female rats, Proc. Soc. Exp. Biol. Med. 161: 251–254.PubMedGoogle Scholar
  116. Steger, R. W., Peluso, J. J., Huang, H. H., Hodson, C. A., Leung, F. C., Meites, J., and Sacher, G., 1980a, Effects of advancing age on the hypothalamic-pituitary-ovarian axis of the female white-footed mouse (Peromyscus leucopus), Exp. Aging. Res. 4: 329–339.Google Scholar
  117. Steger, R. W., Huang, H. H., Hodson, C. A., Leung, F. C., Meites, J., and Sacher, G. A., 1980b, Effects of advancing age on hypothalamic-hypophysial-testicular function in the male white-footed mouse (Peromyscus leucopus), Biol. Reprod. 22: 805–809.PubMedGoogle Scholar
  118. Steger, R. W., Sonntag, W. E., Van Vugt, D. A., Forman, L. J., and Meites, J., 1980c, Reduced ability of naloxone to stimulate LH and testerone release in aging male rats: Possible relation to increase in hypothalamic metenkephalin, Life Sci. 27: 747–754.PubMedGoogle Scholar
  119. Uhl, G. R., Childers, S. R., and Snyder, S. H., 1978, Opioid peptides and the opiate receptors, in: Frontiers in Neuroendocrinology ( W. F. Ganong and L. Martine, eds.), Raven Press, New York, p. 289.Google Scholar
  120. Walker, R. F., 1980, Serotonin circadian rhythm as a pacemaker for reproductive cycles in the female rat, in: Progress in Psychoneuroendocrinology ( F. Brambilla, G. Racagni, and D. de Wied, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 591–600.Google Scholar
  121. Wilkes, M. M., and Yen, S. S. C., 1981, Attenuation during aging of the postovariectomy rise in median eminence catecholamines, Neuroendocrinology 33: 144–147.PubMedGoogle Scholar
  122. Wilkes, M. M., Lu, K. H., Fulton, S. L., and Yen, S. S. C., 1979, Hypothalamic-pituitary, ovarian interactions during reproductive senescence in the rat, in: Advances in Experimental Medicine and Biology, Vol. 113: Parkinson’s Disease-II ( C. E. Finch, D. E. Potter, and A. D. Kenny, eds.), Plenum Press, New York, pp. 127–148.Google Scholar
  123. Wise, P. M., and Ratner, A., 1980, Effects of ovariectomy on plasma LH, FSH, estradiol and progesterone and medial basal hypothalamic LHRH concentrations in old and young rats, Neuroendocrinology 30: 15–20.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • James W. Simpkins
    • 1
  1. 1.Department of Pharmaceutical Biology, College of PharmacyUniversity of FloridaGainesvilleUSA

Personalised recommendations