Morphological Changes in the Hypothalamus and Other Brain Areas Influencing Endocrine Function during Aging

  • James A. Clemens


Morphological alterations or nerve cell loss in neuroendocrine regulatory areas represent a convenient explanation for the demise of neuroendocrine function which accompanies aging. Biochemical evidence and lesion experiments support the idea that morphological changes in the brain may be responsible for the age-related changes in estrous cycles and hormone secretory patterns. In addition, the feedback of target organ hormones has been proposed to accelerate neuronal degeneration in neuroendocrine regulatory areas. However, while several lines of evidence are suggestive of the occurrence of morphological changes in neuroendocrine regulatory areas with aging, little neuroanatomical data is presently available to support the existence of such changes. The purpose of this chapter is to review the available evidence for morphological changes in brain areas influencing endocrine function.


Cell Loss Locus Coeruleus Estrous Cycle Arcuate Nucleus Preoptic Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ball, M. J., 1977, Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with aging and dementia: A quantitative study, Acta Neuropathol. 37: 111–121.PubMedCrossRefGoogle Scholar
  2. Barraclough, C. A., 1963, Secretion and release of LH and FSH: Discussion, in: Advances in Neuroendocrinology ( A. V. Nalbandov, ed.), University of Illinois Press, Urbana, pp. 224–233.Google Scholar
  3. Bondareff, W., 1979, Synaptic atrophy in the senescent hippocampus, Mech. Ageing Bev. 9: 163–171.CrossRefGoogle Scholar
  4. Brawer, J. R., Naftolin, F., Martin, J., Sonnenschein, C., 1978, Effects of a single injection of estradiol valerate on the hypothalamic arcuate nucleus and on reproductive function in the female rat, Endocrinology 103: 501–512.PubMedCrossRefGoogle Scholar
  5. Brawer, J. R., Ruf, K. B., and Naftolin, F., 1980a, The effects of estradiol-induced lesions of the arcuate nucleus on gonadotropin release in response to preoptic stimulation in the rat, Neuroendocrinology 30: 144–149.PubMedCrossRefGoogle Scholar
  6. Brawer, J. R., Schipper, H., and Naftolin, F., 1980b, Ovary-dependent degeneration in the hypothalamic arcuate nucleus, Endocrinology 107:274–279.Google Scholar
  7. Brizzee, K. R., 1973, Quantitative histological studies on aging changes in cerebral cortex of rhesus monkey and albino rat with notes on effects of prolonged low-dose ionizing irradiation in the rat, Prog. Brain Res. 40: 141–160.PubMedCrossRefGoogle Scholar
  8. Brizzee, K. R., Ordy, J. M., Hansche, J., and Kaack, B., 1976, Quantitative assessment of changes in neuron and glia cell packing density and lipofuscin accumulation with age in the cerebral cortex of a non-human primate (Macaca mulatta), in: Aging: Neurobiology of Aging ( R. D. Terry and S. Gershon, eds.), Raven Press, New York, pp. 229–244.Google Scholar
  9. Brizzee, K. R., Ordy, J. M., and Bartus, R. T., 1980, Localization of cellular changes within multimodal sensory regions in aged monkey brain: Possible implications for age-related cognitive loss, Neurobiol. Aging 1: 45–52.PubMedCrossRefGoogle Scholar
  10. Brody, H., and Vijayashankar, N., 1977, Anatomical changes in the nervous system, in: Handbook of the Biology of Aging ( C. E. Finch and L. Hayflick, eds.), Van NostrandReinhold, New York, pp. 241–254.Google Scholar
  11. Carrillo, A. J., Rabii, J., Carrer, H. F., and Sawyer, C. H., 1977, Modulation of the proestrous surge of luteinizing hormone by electrochemical stimulation of the amygdala and hippocampus in the unanesthetized rat, Brain Res. 128: 81–92.PubMedCrossRefGoogle Scholar
  12. Casanueva, F., Cocchi, D., Locatelli, V., Flauto, C., Zambotti, F., Bestetti, G., Rossi, G. L., and Mueller, E., 1982, Defective central nervous system dopaminergic function in rats with estrogen-induced pituitary tumors, as assessed by plasma prolactin concentrations, Endocrinology 110: 590–599.PubMedCrossRefGoogle Scholar
  13. Clemens, J. A., and Bennett, D. R., 1977, Do aging changes in the preoptic area contribute to loss of cyclic endocrine function ? J. Gerontol. 32: 19–24.PubMedGoogle Scholar
  14. Clemens, J. A., Amenomori, Y., Jenkins, T., and Meites, J., 1969, Effects of hypothalamic stimulation, hormones, and drugs on ovarian function in old female rats, Proc. Soc. Exp. Biol. Med. 132: 561–563.PubMedGoogle Scholar
  15. Clifton, D. H., and Sawyer, C. H., 1979, LH release and ovulation in the rat following depletion of hypothalamic norepinephrine: Chronic vs. acute effects, Neuroendocrinology 28: 442–449.PubMedCrossRefGoogle Scholar
  16. Cotman, C. W., and Scheff, S. W., 1979, Synaptic growth in aged animals. in: Physiology and Cell Biology of Aging ( A. Cherkin, ed.), Raven Press, New York, pp. 109–120.Google Scholar
  17. Devaney, K. O., and Johnson, H. A., 1980, Neuron loss in the aging visual cortex of man, J. Gerontol. 35: 836–841.PubMedGoogle Scholar
  18. Geinisman, Y., 1979, Loss of axosomatic synapses in the dentate gyrus of aged rats, Brain Res. 168: 485–492.PubMedCrossRefGoogle Scholar
  19. Goldman, G., and Coleman, P. D., 1981, Neuron numbers in locus coeruleus do not change with age in Fischer 344 rat, Neurobiol. Aging 2: 33–36.PubMedCrossRefGoogle Scholar
  20. Gordon, J. H., Borison, R. K., and Diamond, B. I., 1980, Modulation of dopamine receptor sensitivity by estrogen, Biol. Psychiat. 15: 389–396.PubMedGoogle Scholar
  21. Halasz, B., and Gorski, R., 1967, Gonadotropic hormone secretion in female rats after partial or total interruption of neural afferents to the medial basal hypothalamus, Endocrinology 80: 608–622.PubMedCrossRefGoogle Scholar
  22. Hall, T. C., Miller, A. K. H., and Corsellis, J. A. N., 1975, Variations in the human purkinje cell population according to age and sex, Neuropathol. App. Neurobiol. 1: 267–292.CrossRefGoogle Scholar
  23. Hancke, J. L., and Wuttke, W., 1979, Effects of chemical lesions of the ventral noradrenergic bundle or of the medial preoptic area on preovulatory LH release in rats, Exp. Brain Res. 35: 127–134.PubMedCrossRefGoogle Scholar
  24. Heikkila, R. E., Shapiro, B. S., and Duvoisin, R. C., 1981, The relationship between loss of dopamine nerve terminals, striatal [3H]spiroperidol binding and rotational behavior in unilaterally 6-hydroxy-dopamine-lesioned rats, Brain Res. 211: 285–292.PubMedCrossRefGoogle Scholar
  25. Henderson, G., Tomlinson, B. E., and Weightman, D., 1975, Cell counts in the human cerebral cortex using a traditional and an automatic method, J. Neurol. Sci. 25: 129–144.PubMedCrossRefGoogle Scholar
  26. Hruska, R. E., and Silbergeld, E. K., 1980, Increased dopamine receptor supersensitivity after estrogen treatment using the rat rotation model, Science 208: 1466–1468.PubMedCrossRefGoogle Scholar
  27. Hruska, R. E., Ludmer, L. M., and Silbergeld, E. K., 1980, Hypophysectomy prevents the striatal dopamine receptor supersensitivity produced by chronic haloperidol treatment, Eur. J. Pharmacol. 65: 455–456.PubMedCrossRefGoogle Scholar
  28. Hsu, H. K., and Peng, M. T., 1978, Hypothalamic neuron number of old female rats, Gerontologist 24: 434–440.CrossRefGoogle Scholar
  29. Lamperti, A., and Blaha, G., 1980, The numbers of neurons in the hypothalamic nuclei of young and reproductively senescent female golden hamsters, J. Gerontol. 35: 335–338.PubMedGoogle Scholar
  30. Landfield, P. W., Waymire, J. C., and Lynch, G., 1978, Hippocampal aging and adrenocorticoids: Quantitative correlations, Science 202: 1098–1102.PubMedCrossRefGoogle Scholar
  31. Landfield, P. W., Baskin, R. K., and Pitler, T. A., 1981, Brain aging correlates: Retardation by hormonal-pharmacological treatments, Science 214: 581–584.PubMedCrossRefGoogle Scholar
  32. Machado-Salas, J., Scheibel, M. E., and Scheibel, A. B., 1977, Morphologic changes in the hypothalamus of the old mouse, Exp. Neurol. 57: 102–111.PubMedCrossRefGoogle Scholar
  33. McGeer, P. L., McGeer, E. G., and Suzuki, J. S., 1977, Aging and extrapyramidal function, Arch. Neurol. 34: 33–35.PubMedCrossRefGoogle Scholar
  34. Palkovitz, M. L., Zaborsky, L., Feminger, A., Mezey, E., Fekete, M. I. K., Herman, J. P., Kanyicska, B., and Szabo, D., 1980, Noradrenergic innervation of the hypothalamus: Experimental biochemical and electron microscopic studies, Brain Res. 191: 161–171.CrossRefGoogle Scholar
  35. Sabel, B. A., and Stein, D. G., 1981, Extensive loss of subcortical neurons in the aging rat brain, Exp. Neurol. 73: 507–516.PubMedCrossRefGoogle Scholar
  36. Sawyer, C. H., Radford, H. M., Krieg, R. J., and Carter, H. F., 1978, Control of pituitary-ovarian function by brain catecholamines and LH-releasing hormone, in: Brain-Endocrine Interaction Ill, Neural Hormones and Reproduction, 3rd International Symposium, Karger, Basel, pp. 263–273.Google Scholar
  37. Scheibel, A. B., 1979, Organizational patterns in health and senescence, Mech. Ageing Dev. 9: 89–102.PubMedCrossRefGoogle Scholar
  38. Schipper, H., Brawer, J. R., Nelson, J. F., Felicio, L. S., and Finch, C. E., 1981, Role of the gonads in the histologic aging of the hypothalamic arcuate nucleus, Biol. Reprod. 25: 413–419.PubMedCrossRefGoogle Scholar
  39. Shulz, V., Hunziker, O., 1980, Comparative studies of neuronal perikaryon size and shape in the aging cerebral cortex, J. Gerontol. 35: 483–491.Google Scholar
  40. Vijayashankar, N., and Brody, H., 1979, A quantitative study of the pigmented neurons in the locus coeruleus and subcoeruleus in man as related to aging, J. Neuropathol. Exp. Neurol. 38: 490–496.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • James A. Clemens
    • 1
  1. 1.Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisUSA

Personalised recommendations