Advertisement

Neuroendocrinology of Aging

Retrospective, Current, and Prospective Views
  • Paola S. Timiras

Abstract

There was a time, not much more than ten years ago, when neuroendocrinological theories of aging were almost totally ignored whenever aging theories were listed and discussed. Studies of cellular and molecular senescence focused primarily on the increase, with aging, in free radical reactions, lipid peroxidation, membrane damage, lysosomal leakage and lipofucsin deposition, loss of cellular proliferative capacity, defective protein synthesis due to error-catastrophe or decline in DNA repair activity, and the cumulative damage (wear-and-tear theories) inflicted on the organism by deleterious agents (Timiras, 1972; Rockstein et al., 1974; Finch and Hayflick, 1977; Strehler, 1977; Schneider, 1978; Comfort, 1979; Kanungo, 1980; Masoro, 1981). None of these classical theories, however, was, or is now, sufficient to explain whether a change observed to occur with aging is simply the result of aging or whether it plays a causative role in the aging process. The same is true when these proposed mechanisms are categorized as “stochastic” (due to random chance events), or “programmed” (happening according to a definite plan), or both (e.g., programmed decline in the repair of stochastically generated damage). Likewise, the distinction of these mechanisms as “intrinsic” (built directly into the individual cells) and thereby capable of causing aging in the absence of outside influences, or “extrinsic” (imposed on the cell from the outside) and thereby assuming that aging is externally caused, begs, but does not resolve, the question of whether a certain event is phenomenological or causal. While these theories continue to be prodded, new ones appear or prior theories, including neuroendocrinological ones, are returning or acquiring favor.

Keywords

Thyroid Hormone Aging Process Peptide Hormone Senile Dementia Pituitary Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolph, E. F., 1982, Physiological integrations in action, The Physiologist (Suppl.) 25: 1–67.Google Scholar
  2. Ames, B. N., Cathcart, R., Schwiers, E., and Hochstein, P., 1981, Uric acid provides an antioxidant defense in humans against oxidant-and radical-caused aging and cancer: A hypothesis, Proc. Natl. Acad. Sci. USA 78: 6858–6862.PubMedCrossRefGoogle Scholar
  3. Ball, P., and Knuppen, R., 1980, Catecholoestrogens (2- and 4- Hydroxyoestrogens): Chemistry, biogenesis, metabolism, occurrence and physiological significance, Acta Endocrinologica (Suppl. 232) 93: 1–27.Google Scholar
  4. Barbagallo-Sangiorgi, G., and Exton-Smith, A. N. (eds.), 1980, The Aging Brain: Neurological and Mental Disturbances, Plenum Press, New York.Google Scholar
  5. Barnea, A., Cho, G., and Porter, J. C., 1982a, A reduction in the concentration of immunoreactive corticotropin, melanotropin and lipotropin in the brain of the aging rat, Brain Res. 232: 345–354.PubMedCrossRefGoogle Scholar
  6. Barnea, A., Cho, G., and Porter, J. C., 1982b, Molecular-weight profiles of immunoreactive corticotropin in the hypothalamus of the aging rat, Brain Res. 232: 355–363.PubMedCrossRefGoogle Scholar
  7. Belokrylov, G. A., 1978, Tissue of the syngeneic brain cortex as an immunogenesis stimulant in thymectomized mice, Biull. Eksper. Biol. Medit. 86: 327–330.Google Scholar
  8. Borell, M., 1976, Organotherapy, British physiology, and discovery of the internal secretions, J. Hist. Biol. 9: 235–268.PubMedCrossRefGoogle Scholar
  9. Breese, G. R., Cott, J. M., Cooper, B. R., Prange, A. J., Jr., Lipton, M. A., and Plotnikoff, N. P., 1975, Effects of thyrotropin-releasing hormone (TRH) on the actions of pentobarbital and other centrally acting drugs, J. Pharmacol. Exp. Ther. 193: 11–22.PubMedGoogle Scholar
  10. Brown-Séquard, C.-E., 1889, Seconde note sur les effects produits chez l’homme par des injections sous-cutanées d’un liquide retiré des testicules frais de cobaye et de chien, Compt. Rend. Soc. Biol. (9th Ser.) 1: 420.Google Scholar
  11. Brown-Séquard, C.-E., and d’Arsonval, A., 1891, De l’injection des extraits liquides provenant des glandes et des tissues de l’organisme comme methode therapeutique, Compt. Rend. Soc. Biol. (9th Ser.) 3: 248–250.Google Scholar
  12. Calas, A., and Van Den Bosch de Aguilar, P., 1980, Comparative radioautographic study of serotonergic neurons in young and senescent rats, in: The Psychobiology of Aging: Problems and Perspectives (D. G. Stein, ed.), Elsevier-North Holland, Amsterdam, pp. 59–80.Google Scholar
  13. Choy, V. J., Klemme, W. R., and Timiras, P. S., 1982, Variant forms of immunoreactive thyrotropin in aged rats, Mech. Ageing Dev. 53: 572–581.Google Scholar
  14. Cole, G. M., Segall, P. E., and Timiras, P. S., 1982, Hormones during aging, in: Hormones in Development and Aging ( A. Vernadakis and P. S. Timiras, eds.), SP Medical and Scientific Books, New York, pp. 477–550.Google Scholar
  15. Comfort, A., 1979, The Biology of Senescence, Elsevier, New York.Google Scholar
  16. Conn, P. M., Cooper, R., McNamara, C., Rogers, D. C., and Shoenhardt, L., 1980, Qualitative change in gonadotropin during normal aging in the male rat, Endocrinology 106: 1549–1553.PubMedCrossRefGoogle Scholar
  17. Crook, T., and Gershon, S. (eds.), 1981, Strategies for the Development of an Effective Treatment for Senile Dementia, Mark Powley Associates, New Canaan, Connecticut.Google Scholar
  18. Cross, R. J., Brooks, W. H., Roszman, T. L., and Markesbery, W. R., 1982, Hypothalamic-immune interactions: Effect of hypophysectomy on neuroimmunomodulation, J. Neurol. Sci. 53: 557–566.PubMedCrossRefGoogle Scholar
  19. Cuttler, R. G., 1981, Thyroid hormone receptors in the brain of rat as a function of age and hypophysectomy, in: Aging, Vol. 17, Brain Neurotransmitters and Receptors in Aging and Age-Related Disorders, ( S. J. Enna, T. Samorajski, and B. Beer, eds.), Raven Press, New York, pp. 117–132.Google Scholar
  20. Denckla, W. D., 1974, Role of the pituitary and thyroid glands in the decline of minimal 02 consumption with age, J. Clin. Invest. 53: 572–581.PubMedCrossRefGoogle Scholar
  21. Dilman, V. M., 1976, The hypothalamic control of aging and age-associated pathology. The elevation mechanism of aging, in: Hypothalamus, Pituitary and Aging ( A. V. Everitt and J. A. Burgess, eds.), Charles C. Thomas, Springfield, Illinois, pp. 634–667.Google Scholar
  22. Drayes, D. J., and Timiras, P. S., 1980, Thyroid hormone effects in neural (tumor) cell culture; Differential effects on triiodothyronine nuclear receptors, Na+K+ ATPase activity and intracellular electrolyte levels, in: Tissue Culture in Neurobiology ( E. Giacobini, A. Vernadakis, and A. Shahar, eds.), Raven Press, New York, pp. 291–301.Google Scholar
  23. Duckworth, W. C., and Kitabchi, A. E., 1976, The effect of age on plasma proinsulinlike material after oral glucose, J. Lab. Clin. Med. 88: 359–367.PubMedGoogle Scholar
  24. Dudley, S. D., 1982, Responsiveness to estradiol in central nervous system of aging female rats, Neurosci. Biobehay. Rev. 6: 39–45.CrossRefGoogle Scholar
  25. Eberhardt, N. L., Valcana, T., and Timiras, P. S., 1976, Hormone-receptor interactions in brain: Uptake and binding of thyroid hormone, Psychoneuroendocrinology 1: 399–409.CrossRefGoogle Scholar
  26. Eberhardt, N. L., Valcana, T., and Timiras, P. S., 1978, Triiodothyronine nuclear receptors: An in vitro comparison of the binding of triiodothyronine to nuclei of adult rat liver, cerebral hemisphere and anterior pituitary, Endocrinology 102: 556–561.PubMedCrossRefGoogle Scholar
  27. Enna, S. J., Samorajski, T., and Beer, B. (eds.), 1981, Aging, Vol. 17, Brain Neurotransmitter and Receptors in Aging and Age-Related Disorders, Raven Press, New York.Google Scholar
  28. Everitt, A. V., 1980, The neuroendocrine system and aging, Gerontology 26: 108–119.PubMedCrossRefGoogle Scholar
  29. Everitt, A. V., and Burgess, J. A. (eds.), 1976, Hypothalamus, Pituitary and Aging, Charles C. Thomas, Springfield, Illinois.Google Scholar
  30. Finch, C. E., and Hayflick, L. (eds.), 1977, Handbook of the Biology of Aging, Van Nostrand Reinhold, New York.Google Scholar
  31. Goldstein, A. L., Thurman, G. B., Low, T. L. K., Trivers, G. E., and Rossio, J. L., 1979, Thymosin: The endocrine thymus and its role in the aging process, in: Physiology and Cell Biology of Aging ( A. Gherkin, C. E. Finch, N. Kharasch, T. Makinodan, F. D. Scott, and B. S. Strehler, eds.), Raven Press, New York, p. 51–59.Google Scholar
  32. Gottfries, C. G., 1982, Brain, monoamines and aging, in: Neural Aging and Its Implications in Human Neurological Pathology, Aging, Vol. 18 ( R. D. Terry, C. L. Bolis, and G. Toffano, eds.), Raven Press, New York, pp. 161–168.Google Scholar
  33. Grave, G. D. (ed.), 1977, Thyroid Hormones and Brain Development, Raven Press, New York.Google Scholar
  34. Guillemin, R., 1978, Peptides in the brain: The new endocrinology of the neuron, Science 202: 390–402.PubMedCrossRefGoogle Scholar
  35. Halberg, F., 1982, Biological rhythms, hormones and aging, in: Hormones in Development and Aging ( A. Vernadakis and P. S. Timiras, eds.), SP Medical and Scientific Books, New York, pp. 451–476.Google Scholar
  36. Harman, D., 1981, The aging process, Proc. Natl. Acad. Sci. USA 78: 7124–7128.PubMedCrossRefGoogle Scholar
  37. Harris, G. W., 1955, Neural Control of the Pituitary Gland, Arnold, London.Google Scholar
  38. Herman, E., 1976, Senile hypophyseal syndromes, in: Hypothalamus Pituitary and Aging ( A. V. Everitt and J. A. Burgess, eds.), Charles C. Thomas, Springfield, Illinois, pp. 157–170.Google Scholar
  39. Ito, J. M., Valcana, T., and Timiras, P. S., 1977, Effect of hypo-and hyperthyroidism on regional monoamine metabolism in the adult brain, Neuroendocrinology 24: 55–64.PubMedCrossRefGoogle Scholar
  40. Kanungo, M. S., 1980, Biochemistry of Aging, Academic Press, New York.Google Scholar
  41. Klug, T. L., and Adelman, R. C., 1979, Altered hypothalamic-pituitary regulation of thyrotropin in male rats during aging, Endocrinology 104: 1136–1142.PubMedCrossRefGoogle Scholar
  42. Kolata, G., 1982a, Molecular biology of brain hormones, Science 215: 1223–1224.PubMedCrossRefGoogle Scholar
  43. Kolata, G., 1982b, New theory of hormones proposed, Science 215: 1383–1384.PubMedCrossRefGoogle Scholar
  44. Landfield, P. W., Lindsey, J. D., and Lynch, G., 1978a, Apparent acceleration of brain aging pathology by prolonged administration of glucocorticoids, Soc. Neurosci. Abst. (Abst. No. 350 ) 4: 118.Google Scholar
  45. Landfield, P. W., Waymire, J. C., and Lynch, G., 1978b, Hippocampal aging and adrenocorticoids: Quantitative correlations, Science 202: 1098–1102.PubMedCrossRefGoogle Scholar
  46. Makman, M. H., Gardner, E. L., Thal, L. J., Hirschhorn, I. D., Seeger, T. F., and Bhargava, G., 1980, Central monoamine receptor systems: Influence of aging, lesion and drug treatment, in: Neural Regulatory Mechanisms During Aging ( R. C. Adelman, J. Roberts, G. T. Baker, III, S. I. Baskin, and V. J. Cristofalo, eds.), Alan R. Liss, New York, pp. 91–127.Google Scholar
  47. Margarity, M., Veskoukis, M., Matoskis, N., Valcana, T., Miller, C., and Timiras, P. S., 1981, Changes with aging in serum thyroid hormone levels and thyroid hormone binding in brain tissue, The Endocrine Society, 63rd Annual Meeting, June 17–19, Cincinnati, Ohio, Abstract No. 1136, p. 366.Google Scholar
  48. Martin, G. M., 1978, Genetic syndromes in man with potential relevance to the pathobiology of aging, in: Genetic Effects on Aging ( D. Bergsma, D. E. Harrison, and N. W. Paul, eds.), Alan R. Liss, New York, pp. 5–39.Google Scholar
  49. Masoro, E. J. (ed.), 1981, CRC Series Handbook of Physiology in Aging, CRC Press, Boca Raton, Florida.Google Scholar
  50. Meek, J. L., Bertilsson, L., Cheney, D. L., Zsilla, C., and Costa, E., 1977, Aging-induced changes in acetylcholine and serotonin content of discrete brain nuclei, J. Gerontol. 32: 129–131.Google Scholar
  51. Meites, J. (ed.), 1970, Hypophysiotropic Hormones of the Hypothalamus, Williams and Wilkins, Baltimore.Google Scholar
  52. Meites, J., 1981, Changes in hypothalamic regulation of pituitary function in aging rats, in: Brain Neurotransmitters and Receptors in Aging and Age Related Disorders, Aging, Vol. 17 ( S. J. Enna, T. Samorajski, and B. Beer, eds.), Raven Press, New York, pp. 117–132.Google Scholar
  53. Meites, J., 1982, Changes in neuroendocrine control of anterior pituitary function during aging, Neuroendocrinology 34: 151–156.PubMedCrossRefGoogle Scholar
  54. Müller, E. E., Nistico, G., and Scapagnini, U. (eds.), 1977, Neurotransmitters and Anterior Pituitary Function, Academic Press, New York.Google Scholar
  55. Naidoo, S., Valcana, T., and Timiras, P. S., 1978, Thyroid hormone receptors in the developing rat brain, Am. Zool. 18: 522–545.Google Scholar
  56. Nelson, S. D., Mitchell, J. R., Dybing, E., and Sasame, H. A., 1976, Cytochrome P-450-mediated oxidation of 2-hydroxyestrogens to reactive intermediates, Biochem. Biophys. Res. Commun. 70: 1157–1165.PubMedCrossRefGoogle Scholar
  57. Nelson, J., Felicio, L., Sinha, Y. N., and Finch, C. E., 1980, Ovarian hormones and the etiology of reproductive aging in mice, in: Aging—Its Chemistry ( A. A. Deitz, ed.), Am. Soc. Clin. Chemists., Washington, D.C., pp. 64–81.Google Scholar
  58. Ordy, J. M., 1979, Geriatric psychopharmacology: Drug modification of memory and emotionality in relation to aging in human and non-human primate brain, in: Brain Function in Old Age ( F. Hoffmeister and C. Muller, eds.), Springer-Verlag, Berlin, pp. 435–455.CrossRefGoogle Scholar
  59. Parsons, J. A., 1976, Peptide Hormones, Macmillan, New York.Google Scholar
  60. Platt, J. E., Christopher, M. A., and Sullivan, C. A., 1978, The role of prolactin in blocking thyroxine-induced differentiation of tail tissue in larvae and neotenic Ambystoma tigrinum, Gen. Comp. Endocrinol. 35: 402–408.PubMedCrossRefGoogle Scholar
  61. Prange, A. J., Jr. (ed.), 1974, The Thyroid Axis, Drugs, and Behavior, Raven Press, New York.Google Scholar
  62. Rebar, R. W., Miyake, A., Low, T. L. K., and Goldstein, A. L., 1981, Thymosin stimulates secretion of luteinizing hormone-releasing factor, Science 214: 669–671.PubMedCrossRefGoogle Scholar
  63. Reigle, G. D., 1973, Chronic stress effects on adrenocortical responsiveness in young and aged rats, Neuroendocrinology 11: 1–10.CrossRefGoogle Scholar
  64. Renoux, G., Biziere, K., Renoux, M., Gyenes, L., Degenne, P., Guillemin, J. M., Bardos, P., and Lebranchu, Y., 1980, Effects of the ablation of the left cerebral cortex on T-cell number and cell mediated responses in the mouse, Int. J. Immunopharmacol. 2: 156.CrossRefGoogle Scholar
  65. Roberts, E., 1981, A speculative consideration on the neurobiology and treatment of senile dementia, in: Strategies for the Development of an Effective Treatment for Senile Dementia ( T. Crook and S. Gershon, eds.), Mark Powley Associates, New Canaan, Connecticut, pp. 247–320.Google Scholar
  66. Rockstein, M., Sussman, M. L., and Chesky, J. (eds.), 1974, Theoretical Aspects of Aging, Academic Press, New York.Google Scholar
  67. Roth, G. S., 1976, Reduced glucocorticoid binding site concentration in cortical neuronal perikarya from senescent rats, Brain Res. 107: 345–354.PubMedCrossRefGoogle Scholar
  68. Roth, J., LeRoith, D., Shiloach, J., Rosenzweig, J. L., Lesniak, M. A., and Havrankova, J., 1982, The evolutionary origins of hormones, neurotransmitters, and other extracellular chemical messengers: Implications for mammalian biology, N. Engl. J. Med. 306: 523–527.PubMedCrossRefGoogle Scholar
  69. Scapagnini, U., Canonico, P. L., Drago, F., Amico-Roxas, M., Toffano, G., Valeri, P., and Angelucci, L., 1980, Neuroendocrinology and aging of the brain, in: The Aging Brain: Neurological and Mental Disturbances ( G. Barbagallo-Sangiorgi and A. N. Exton-Smith, eds.), Plenum Press, New York, pp. 33–49.Google Scholar
  70. Schally, A. V., 1978, Aspects of hypothalamic regulation of the pituitary gland: Its implications for the control of reproductive processes, Science 202: 18–28.PubMedCrossRefGoogle Scholar
  71. Scharrer, E., and Scharrer, B., 1963, Neuroendocrinology, Columbia University Press, New York.Google Scholar
  72. Schneider, E. L. (ed.), 1978, The Genetics of Aging, Plenum Press, New York.Google Scholar
  73. Segall, P. E., 1979, Interrelations of dietary and hormonal effects in aging, Mech. Ageing Dev. 9: 515–525.PubMedCrossRefGoogle Scholar
  74. Segall, P. E., and Timiras, P. S., 1976, Pathophysiologic findings after chronic tryptophan deficiency in rats: A model for delayed growth and aging, Mech. Ageing Dev. 5: 109–124.PubMedCrossRefGoogle Scholar
  75. Segall, P. E., Ooka, H., Rose, K., and Timiras, P. S., 1978, Neural and endocrine development after chronic tryptophan deficiency in rats, I. Brain monoamine and pituitary responses, Mech. Ageing Dev. 7: 1–17.PubMedCrossRefGoogle Scholar
  76. Selye, H., 1950, Stress—The Physiology and Pathology of Exposure to Stress, Acta Inc. Medical Publishers, Montreal, Quebec.Google Scholar
  77. Selye, H., 1974, Stress Without Distress, J. B. Lippincott, Philadelphia.Google Scholar
  78. Shaar, C. J., Euker, J. S., Riegle, G. D., and Meites, J., 1975, Effects of castration and gonadal steroids on serum LH and prolactin in old and young rats, J. Endocrinol. 66: 45–51.PubMedCrossRefGoogle Scholar
  79. Snyder, S. H., 1980, Brain peptides as neurotransmitters, Science 209: 976–983.PubMedCrossRefGoogle Scholar
  80. Stein, M., Schiavi, R. C., and Camerino, M., 1976, Influence of brain and behavior on the immune system, Science 191: 435–440.PubMedCrossRefGoogle Scholar
  81. Strehler, B. L., 1977, Time, Cells, and Aging, 2nd Ed., Academic Press, New York.Google Scholar
  82. Terry, R. D., 1980, Some biological aspects of the aging brain, Mech. Ageing Dey. 14: 191–201.CrossRefGoogle Scholar
  83. Terry, R. D., Bolis, C. L., and Toffano, G. (eds.), 1982, Neural Aging and Its Implications in Human Neurological Pathology, Aging, Vol. 18, Raven Press, New York.Google Scholar
  84. Timiras, P. S., 1972, Developmental Physiology and Aging, Macmillan, New York.Google Scholar
  85. Timiras, P. S., 1978, Biological perspectives of aging: In search of a master plan, Am. Sci. 66: 605–613.PubMedGoogle Scholar
  86. Timiras, P. S., 1982a, Neuroendocrine theories of aging: Homeostasis and stress, in: Hormones in Development and Aging ( A. Vernadakis and P. S. Timiras, eds.), SP Medical and Scientific Books, New York, pp. 551–586.Google Scholar
  87. Timiras, P. S., 1982b, Physiology of aging: Aspects of neuroendocrine regulation, in: Textbook of Geriatric Medicine (M. S. J. Pathy, ed.), John Wiley and Sons, New York (in press).Google Scholar
  88. Timiras, P. S., and Bignami, A., 1976, Pathophysiology of the aging brain, in: Special Review of Exp. Aging Research Progress in Biology ( M. F. Elias, B. E. Eleftheriou, and P. K. Elias, eds.), EAR, Bar Harbor, Maine, pp. 351–378.Google Scholar
  89. Timiras, P. S., and Hudson, D. B., 1980, Changes in neurohumoral transmission during aging of the central nervous system, in: Neural Regulatory Mechanisms During Aging ( R. C. Adelman, J. Roberts, G. T. Baker, III, S. I. Baskin, and V. J. Cristofalo, eds.), Alan R. Liss, New York, pp. 25–51.Google Scholar
  90. Toffano, G., Calderini, G., Battistella, A., Scapagnini, U., Gaiti, A., Ponzio, F., Algeri, S., and Crews, F., 1982, Biochemical changes related to neurotransmission in the aging brain, in: Aging, Vol. 18, Neural Aging and Its Implications in Human Neurological Pathology, ( R. D. Terry, C. L. Bolis, and G. Toffano, eds.), Raven Press, New York, pp. 119–128.Google Scholar
  91. Vaccari, A., and Timiras, P. S., 1981, Alterations in brain dopaminergic receptors in developing hypo-and hyperthyroid rats, Neurochem. Int. 3: 149–153.PubMedCrossRefGoogle Scholar
  92. Vaccari, A., Valcana, T., and Timiras, P. S., 1977, Effects of hypothyroidism on the enzymes for biogenic amines in the developing rat brain, Pharmacol. Res. Commun. 9: 763–780.PubMedCrossRefGoogle Scholar
  93. Valcana, T., 1979, The role of triiodothyronine (T3) receptors in brain development, in: Neural Growth and Differentiation ( E. Meisami and M. A. B. Brazier, eds.), Raven Press, New York, pp. 39–57.Google Scholar
  94. Valcana, T., and Timiras, P. S., 1978, Nuclear triiodothyronine receptors in the developing rat brain, Mol. Cell. Endocrinol. 2: 31–41.CrossRefGoogle Scholar
  95. Valcana, T., and Timiras, P. S., 1979, Changes in rat liver nuclear triiodothyronine receptors with age and thyroid activity, in: Hormones and Development ( L. Macho and J. Strbak, eds.), Slovak Academy of Sciences, Bratislava, pp. 47–75.Google Scholar
  96. Vernadakis, A., and Timiras, P. S. (eds.), 1982, Hormones in Development and Aging, SP Medical and Scientific Books, New York.Google Scholar
  97. Walker, R. F., and Timiras, P. S., 1980, Loss of serotonin circadian rhythms in the pineal gland of androgenized female rats, Neuroendocrinology 31: 265–269.PubMedCrossRefGoogle Scholar
  98. Walker, R. F., and Timiras, P. S., 1981, Serotonin in development of cyclic reproductive function, in: Advances in Experimental Biology and Medicine, Vol. 133 Serotonin: Current Aspects of Neurochemistry and Function, ( B. Haber, S. Gabay, M. R. Issidorides, and S. G. A. Alivisatos, eds.), Plenum Press, New York, pp. 515–539.Google Scholar
  99. Walker, R. F., and Timiras, P. S., 1982, Pacemaker insufficiency and the onset of aging, in: Cellular Pacemakers, Vol. 2 ( P. Carpenter, ed.), Wiley Interscience, New York, pp. 396–425.Google Scholar
  100. Walker, R. F., Cooper, R. L., and Timiras, P. S., 1980, Constant estrus: Role of rostral hypothalamic monoamines in development of reproductive dysfunction in aging rats, Endocrinology 107: 249–255.PubMedCrossRefGoogle Scholar
  101. Yarbrough, G. G., 1976, TRH potentiates excitatory actions of acetylcholine on cerebral cortical neurons, Nature 263: 523–524.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Paola S. Timiras
    • 1
  1. 1.Department of Physiology-AnatomyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations