Advertisement

Photobiology and Radiobiology of Micrococcus (Deinococcus) radiodurans

  • Bevan E. B. Moseley

Abstract

Micrococcus radiodurans, a gram-positive, nonsporing, red-pigmented bacterium, is the type species of a small group of bacteria, the members of which are characterized by extreme resistance to both the lethal and mutagenic effects of ionizing and ultraviolet (UV) radiation. They show no loss of viability up to doses of 500 krad or 500 Jm-2 of ionizing or UV radiation, respectively, and this has made them particularly useful for studying aspects of DNA damage and repair in populations in which every member is a survivor. Those scientists working with Escherichia coli will realize what a luxury this is. Nevertheless, these bacteria have been regarded largely as a scientific curiosity (a recent proposal has been made to change their generic name to Deinococcus, meaning “strange berry”)! and the research effort put into them has been paltry compared with that devoted to E. coli. Thus, although the first paper on them was published twenty-seven years ago, this is the first review of the literature on their remarkable property of radiation resistance.

Keywords

Linear Energy Transfer Pyrimidine Dimer Recombination Repair Phenethyl Alcohol Methyl Methane Sulfonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, P., Lett, J. T., and Dean, C. J., 1965, The role of postirradiation repair processes in chemical protection and sensitization. Prog. Biochem. Pharmacol. 1:22–40.Google Scholar
  2. Anderson, A. W., Nordan, H. C., Cain, R. F., Parrish, G., and Duggan, D., 1956, Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation, Food Technol. 10:575–578.Google Scholar
  3. Anderson, A. W., Rash, K. E., and EUiker, P. R., 1961, Taxonomy of a newly-isolated radiation-resistant micrococcus, Bacteriol. Proc. p. 56.Google Scholar
  4. Baird-Parker, A. C., 1965, The classification of staphylococci and micrococci from worldwide sources, J. Gen. Microbiol. 38:363–387.Google Scholar
  5. Baird-Parker, A. C., 1970, The relationship of cell wall composition to the current classification of staphylococci and micrococci, Int. J. Syst. Bacteriol. 20:483–490.Google Scholar
  6. Boling, M. E., and Setlow, J. K., 1966, The resistance of Micrococcus radiodurans to ultraviolet radiation III. A repair mechanism, Biochim. Biophys. Acta. 123:26–33.Google Scholar
  7. Bonura, T., and Bruce, A. K., 1974, The repair of single-strand breaks in a radiosensitive mutant of Micrococcus radiodurans, Radiat. Res. 57:260–275.Google Scholar
  8. Boyce, R. P., and Howard-Flanders, P., 1964, Release of ultraviolet light-induced thymine dimers from DNA in E. coli K-12, Proc. Natl. Acad. Sci. USA 51:293–300.Google Scholar
  9. Bridges, B. A., 1971, RecA + -dependent repair of gamma-ray damage to Escherichia coli does not require recombination between existing homologous chromosomes, J. Bacteriol. 108:944–945.Google Scholar
  10. Bridges, B. A., Ashwood-Smith, M. J., and Munson, R. J., 1969, Correlation of bacterial sensitivities to ionizing radiation and mild heating, J. Gen. Microbiol. 58:115–124.Google Scholar
  11. Brooks, B. W., and Murray, R. G. E., 1981, Nomenclature for “Micrococcus radiodurans” and other radiation resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen nov., including five species, Int. J. Syst. Bacteriol. 31:353–360.Google Scholar
  12. Brooks, B. W., Murray, R. G. E., Johnson, J. L., Stackebrandt, E., Woese, C. R., and Fox, G. E., 1980, Red-pigmented micrococci; a basis for taxonomy, Int. J. Syst. Bacteriol. 30:627–646.Google Scholar
  13. Bruce, A. K., 1964, Extraction of the radioresistant factor of Micrococcus radiodurans, Radiat. Res. 22:155–164.Google Scholar
  14. Bruce, A. K., and Malchman, W. H., 1965, Radiation sensitization of Micrococcus radiodurans, Sarcina lutea, and Escherichia coli by p-hydroxymercuribenzoate, Radiat. Res. 24:473–481.Google Scholar
  15. Budayovâ, E. and Sedliakovâ, M., 1977, Normal excision of pyrimidine dimers after thymine starvation in Micrococcus radiodurans, J. Gen. Microbiol. 101:333–335.Google Scholar
  16. Burrell, A. D., Feldschreiber, P., and Dean, C. J., 1971, DNA-membrane association and the repair of double breaks in X-irradiated Micrococcus radiodurans, Biochim. Biophys. Acta 247:38–53.Google Scholar
  17. Burton, K., 1956, A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid, Biochem. J. 62:315–323.Google Scholar
  18. Cho, H. O., Kitayama, S., and Matsuyama, A., 1974, Radiation sensitization of Micrococcus radiodurans by postirradiation incubation at nonpermissive temperature, Radiat. Res. 60:333–341.Google Scholar
  19. Dardalhon-Samsonoff, M., and Averbeck, D., 1980, DNA-membrane complex restoration in Micrococcus radiodurans after X-irradiation: relation to repair, DNA synthesis and DNA degradation, Int. J. Radiat. Biol. 38:31–52.Google Scholar
  20. Dardalhon-Samsonoff, M., and Rebeyrotte, N., 1975, Rôle de l’attachement du DNA à la membrane dans la réparation des radiolésions chez Micrococcus radiodurans, Int. J. Radiat. Biol. 27:157–169.Google Scholar
  21. Davis, N. S., Silverman, G. J., and Masurovsky, E. B., 1963, Radiation-resistant, pigmented coccus isolated from haddock tissue, J. Bacteriol. 86:294–298.Google Scholar
  22. Dean, C., and Pauling, C., 1970, Properties of a deoxyribonucleic acid, ligase mutant of Escherichia coli: X-ray sensitivity, J. Bacteriol. 102:588–589.Google Scholar
  23. Dean, C. J., and Alexander, P., 1962, Sensitization of radio-resistant bacteria to X-rays by iodoacetamide, Nature 196:1324–1326.Google Scholar
  24. Dean, C. J., Feldschreiber, P., and Lett, J. T., 1966, Repair of X-ray damage to the deoxyribonucleic acid in Micrococcus radiodurans, Nature 209:49–52.Google Scholar
  25. Dean, C. J., Ormerod, M. G., Serianni, R. W., and Alexander, P., 1969, DNA strand breakage in cells irradiated with X-rays, Nature 222:1042–1044.Google Scholar
  26. Dean, C. J., Little, J. G., and Serianni, R. W., 1970, The control of post-irradiation DNA breakdown in Micrococcus radiodurans, Biochem. Biophys. Res. Commun. 39:126–134.Google Scholar
  27. Dewey, D. L., 1969, The survival of Micrococcus radiodurans irradiated at high LET and the effect of acridine orange, Int. J. Radiat. Biol. 16:583–592.Google Scholar
  28. Dewey, D. L., and Michael, B. D., 1965, The mechanism of radiosensitisation by iodoac-etamide. Biochem. Biophys. Res. Commun. 21:392–396.Google Scholar
  29. Driedger, A. A., 1970a, The ordered growth pattern of microcolonies of Micrococcus radiodurans: first generation sectoring of induced lethal mutations, Can. J. Microbiol. 16:1133–1135.Google Scholar
  30. Driedger, A. A., 1970b, The DNA content of single cells of Micrococcus radiodurans, Can. J. Microbiol. 16:1136–1137.Google Scholar
  31. Driedger, A. A., 1970c, Are there multiple attachments between bacterial DNA and the cell membrane?, Can. J. Microbiol. 16:881–882.Google Scholar
  32. Driedger, A. A., and Grayston, M. J., 1970, Rapid lysis of cell walls of Micrococcus radiodurans with lysozyme: effects of butanol pretreatment on DNA, Can. J. Microbiol. 16:889–893.Google Scholar
  33. Driedger, A. A., and Grayston, M. J., 1971a, Demonstration of two types of DNA repair in X-irradiated Micrococcus radiodurans, Can. J. Microbiol. 17:495–499.Google Scholar
  34. Driedger, A. A., and Grayston, M. J., 1971b, The effects of nalidixic acid on X-ray-induced DNA degradation and repair in Micrococcus radiodurans, Can. J. Microbiol. 17:501–505.Google Scholar
  35. Driedger, A. A., and Grayston, M. J., 1971c, The enhancement of X-ray-induced DNA degradation in Micrococcus radiodurans by phenethyl alcohol, Can. J. Microbiol. 17:487–493.Google Scholar
  36. Driedger, A. A., James, A. P., and Grayston, M. J., 1970, Cell survival and X-ray-induced DNA degradation in Micrococcus radiodurans, Radiat. Res. 44:835–845.Google Scholar
  37. Duggan, D. E., Anderson, A. W., Elliker, P. R., and Cain, R. F., 1959, Ultraviolet exposure studies on a gamma radiation resistant micrococcus isolated from food, Food Res. 24:376–382.Google Scholar
  38. Duggan, D. E., Anderson, A. W., and Elliker, P. R., 1963, Inactivation-rate studies on a radiation-resistant spoilage microorganism. Ill Thermal inactivation rates in beef, J. Food. Sci. 28:130–134.Google Scholar
  39. Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T., Wolfe, R. S., Balch, W., Tanner, R., Magrum, L., Zablen, L. B., Blakemore, R., Gupta, R., Luehrsen, K. R., Bonen, L., Lewis, B. J., Chen, K. N., and Woese, C. R., 1980, The phylogeny of procaryotes, Science 209:457–463.Google Scholar
  40. Fox, M., and Hopkins, J., 1970, Post-irradiation DNA degradation and response to fractionated doses in Micrococcus radiodurans, Int. J. Radiat. Biol. 18:507–519.Google Scholar
  41. Freedman, M. L., and Bruce, A. K., 1971, The relationship of radioresistance to balanced growth rate in Micrococcus radiodurans, Int. J. Radiat. Biol. 19:111–121.Google Scholar
  42. Freedman, M. L., and Bruce, A. K., 1972, Deoxyribonucleic acid — protein ratio and radioresistance in Micrococcus radiodurans, J. Bacteriol. 109:1310–1312.Google Scholar
  43. Ganesan, A. K., and Smith, K. C., 1972, Requirement for protein synthesis in rec — dependent repair of deoxyribonucleic acid in Escherichia coli after ultraviolet or X irradiation, J. Bacteriol. 111:575–585.Google Scholar
  44. Gentner, N. E., 1973, DNA polymerase of Micrococcus radiodurans and its relation to repair of radiation damage. Fed. Proc. 32, p. 452, Abstract 1287.Google Scholar
  45. Gentner, N. E., 1974, Evidence for two DNA polymerases in Micrococcus radiodurans and for involvement of one in repair. Fed. Proc. 33, p. 1600, Abstract 2128.Google Scholar
  46. Gentner, N. E., and Mitchel, R. E. J., 1975, Ionizing radiation-induced release of a cell surface nuclease from Micrococcus radiodurans, Radiat. Res. 61:204–215.Google Scholar
  47. Girard, A. E., 1971, A comparative study of the fatty acids of some micrococci, Can. J. Microbiol. 17:1503–1508.Google Scholar
  48. Glickman, B. W., Zwenk, H., Van Sluis, C. A., and Rörsch, A., 1971, The isolation and characterization of an X-ray sensitive, ultraviolet-resistant mutant of Escherichia coli, Biochim. Biophys. Acta 254:144–154.Google Scholar
  49. Hansen, M. T., 1978, Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans, J. Bacteriol. 134:71–75.Google Scholar
  50. Hansen, M. T., 1980, Four proteins synthesized in response to deoxyribonucleic acid damage in Micrococcus radiodurans, J. Bacteriol. 141:81–86.Google Scholar
  51. Hariharan, P. V., 1980, Determination of thymine ring saturation products of the 5,6-dihydroxydihydrothymine type by the alkali degradation assay, Radiat. Res. 81:496–498.Google Scholar
  52. Hariharan, P. V., and Cerutti, P. A., 1971, Repair of 7-ray-induced thymine damage in Micrococcus radiodurans, Nature New Biol. 229:247–249.Google Scholar
  53. Hariharan, P. V., and Cerutti, P. A., 1972a, Formation and repair of 7-ray induced thymine damage in Micrococcus radiodurans, J. Mol. Biol. 66:65–81.Google Scholar
  54. Hariharan, P. V., and Cerutti, P. A., 1972b, Repair of strand breaks in gamma-irradiated Micrococcus radiodurans, Int. J. Radiat. Biol. 22:301–306.Google Scholar
  55. Hariharan, P. V., and Cerutti, P. A., 1974, Excision of damaged thymine residues from gamma-irradiated poly (dA-dT) by crude extracts of Escherichia coli, Proc. Natl. Acad. Sci. USA 71:3532–3536.Google Scholar
  56. Hariharan, P. V., and Cerutti, P. A., 1977, Formation of products of the 5,6-dihydroxydihydrothymine type by ultraviolet light in Hela cells, Biochemistry 16:2791–2795.Google Scholar
  57. Harsojo, Kitayama S., and Matsuyama, A., 1981, Genome multiplicity and radiation resistance in Micrococcus radiodurans, J. Biochem. 90:877–880.Google Scholar
  58. Hill, R. F., 1958, A radiation sensitive mutant of Escherichia coli, Biochim. Biophys. Acta 30:636–637.Google Scholar
  59. Howard-Flanders, P., and Boyce, R. P., 1966, DNA repair and genetic recombination studies on mutants of Escherichia coli defective in these processes, Radiat. Res. 6(Suppl.):156–184.Google Scholar
  60. Howard-Flanders, P., and Theriot, L., 1962, A method for selecting radiation sensitive mutants of Escherichia coli, Genetics 47:1219–1224.Google Scholar
  61. Ito, H., 1977, Isolation of Micrococcus radiodurans occurring in radurized sawdust culture media of mushroom, Agric. Biol. Chem. 41:35–41.Google Scholar
  62. Iyer, V. N., and Rupp, W. D., 1971, Usefulness of benzoylated naphthoylated DEAE cellulose to distinguish and fractionate double-stranded DNA bearing different extents of single-stranded regions, Biochim. Biophys. Acta 228:117–126.Google Scholar
  63. Johansen, I., 1975, The radiobiology of DNA strand breakage, in: Molecular Mechanisms for the Repair of DNA, (P. C. Hanawalt and R. B. Setlow, eds.), Part B, pp. 459–469, Plenum Press, New York.Google Scholar
  64. Kaplan, H. S., 1966, DNA-strand scission and loss of viability after X-irradiation of normal and sensitized bacterial cells, Proc. Natl. Acad. Sci. USA 55:1442–1446.Google Scholar
  65. Kapp, D. S., and Smith, K. C., 1970, Repair of radiation-induced damage in Escherichia coli II. Effect of rec and uvr mutations on radio-sensitivity, and repair of X-ray-induced single-strand breaks in deoxyribonucleic acid, J. Bacteriol. 103:49–54.Google Scholar
  66. Kerszman, G., 1975, Induction of mutation to streptomycin resistance in Micrococcus radiodurans, Mutat. Res. 28:9–14.Google Scholar
  67. Kilburn, R. E., Bellamy, W. D., and Terni, S. A., 1958, Studies on a radiation-resistant pigmented Sarcina sp., Radiat. Res. 9:207–215.Google Scholar
  68. Kitayama, S., and Matsuyama, A., 1968, Possibility of the repair of double-strand scissions in Micrococcus radiodurans DNA caused by gamma-rays, Biochem, Biophys. Res. Commun. 33:418–422.Google Scholar
  69. Kitayama, S., and Matsuyama, A., 1970, Macromolecular synthesis in Micrococcus radiodurans during postirradiation incubation, Agric. Biol. Chem. 34:1095–1100.Google Scholar
  70. Kitayama, S., and Matsuyama, A., 1971a, Double-strand scissions in DNA of gamma-irradiated Micrococcus radiodurans and their repair during postirradiation incubation, Agric. Biol. Chem. 35:644–652.Google Scholar
  71. Kitayama, S., and Matsuyama, A., 1971b, Mechanism for radiation lethality in M. radiodurans, Int. J. Radiat. Biol. 19:13–19.Google Scholar
  72. Kitayama, S., and Matsuyama, A., 1975, Loss of characteristic radiation resistance by mutation of Micrococcus radiodurans, Mutat. Res. 29:327–332.Google Scholar
  73. Kitayama, S., and Matsuyama, A., 1976, DNA synthesis and repair in permeable cells of Micrococcus radiodurans, Biochim. Biophys. Acta 418:321–329.Google Scholar
  74. Kitayama, S., and Matsuyama, A., 1977, Separation of DNA-dependent DNA polymerase activities in Micrococcus radiodurans, Biochim. Biophys. Acta 475:23–31.Google Scholar
  75. Kitayama, S., Igarashi, K., Karasawa, T., and Matsuyama, A., 1970, LET effects in Micrococcus radiodurans irradiated with alpha particles in the liquid phase, Agric. Biol. Chem. 34:1346–1354.Google Scholar
  76. Kitayama, S., Shiratori, K., Yatagai, F., and Matsuyama, A., 1977, Enhanced lethal effect of various agents on M. radiodurans by postincubation at nonpermissive temperature, Agric. Biol. Chem. 41:2297–2298.Google Scholar
  77. Kitayama, S., Ishizaka, Y., Miyai, S., and Matsuyama, A., 1978, An exonuclease activity associated with DNA polymerase I of Micrococcus radiodurans, Biochim. Biophys. Acta 520:122–130.Google Scholar
  78. Knivett, V. A., Cullen, J., and Jackson, M. J., 1965, Odd-numbered fatty acids in Micrococcus radiodurans, Biochem. J. 96:2c–3c.Google Scholar
  79. Kobatake, M., Tanabe, S., and Hasegawa, S., 1973, Nouveau Micrococcus radiorésistant à pigment rouge, isolé de fèces de Lama glama et son utilisation comme indicateur microbiologique de la radiostérilisation, C. R. Soc. Biol. (Paris) 167:1506–1510.Google Scholar
  80. Krabbenhoft, K. L., Anderson, A. W., and Elliker, P. R., 1965, Ecology of Micrococcus radiodurans, Appl. Microbiol. 13:1030–1037.Google Scholar
  81. Krabbenhoft, K. L., Anderson, A. W., and Elliker, P. R., 1967, Influence of culture media on the radiation resistance of Micrococcus radiodurans, Appl. Microbiol. 15:178–185.Google Scholar
  82. Krasin, F., and Hutchinson, F., 1977, Repair of double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome,J. Mol. Biol. 116:81–98.Google Scholar
  83. Lancy, P., and Murray, R. G. E., 1978, The envelope of Micrococcus radiodurans: isolation, purification, and preliminary analysis of the wall layers, Can. J. Microbiol. 24:162–176.Google Scholar
  84. Lavin, F. L., Jenkins, A., and Kidson, C., 1976, Repair of ultraviolet light-induced damage in Micrococcus radiophilus, an extremely resistant microorganism, J. Bacteriol. 126:587–592.Google Scholar
  85. Lee, J. S., Anderson, A. W., and Elliker, P. R., 1963, The radiation-sensitizing effects of N-ethylmaleimide and iodoacetic acid on a radiation-resistant Micrococcus, Radiat. Res. 19:593–598.Google Scholar
  86. Leibowitz, P. J., Schwartzberg, L. S., and Bruce, A. K., 1976, The in vivo association of manganese with the chromosome of Micrococcus radiodurans, Photochem. Photobiol. 23:45–50.Google Scholar
  87. Lett, J. T., Feldschreiber, P., Little, J. G., Steele, K., and Dean, C. J., 1967a, The repair of X-ray damage to the deoxyribonucleic acid in Micrococcus radiodurans: a study of the excision process, Proc. R. Soc. Lond. (Biol.) 167:184–201.Google Scholar
  88. Lett, J. T., Caldwell, I., Dean, C. J., and Alexander, P., 1967b, Rejoining of X-ray induced breaks in the DNA of leukaemia cells, Nature 214:790–792.Google Scholar
  89. Lett, J. T., Caldwell, I., and Little, J. G., 1970, Repair of X-ray damage to the DNA in Micrococcus radiodurans: the effect of 5-bromodeoxyuridine. J. Mol. Biol. 48:395–408.Google Scholar
  90. Lewis, N. F., 1971, Studies on a radio-resistant coccus isolated from Bombay duck (Harpodon nehereus), J. Gen. Microbiol. 66:29–35.Google Scholar
  91. Lewis, N. F., 1973, Radio-resistant Micrococcus radiophilus sp. nov. isolated from irradiated Bombay duck (Harpodon nehereus), Curr. Sci. 42:504.Google Scholar
  92. Lewis, N. F., and Kumta, U. S., 1972, Evidence for extreme UV resistance of Micrococcus sp. NCTC 10785, Biochem. Biophys. Res. Commun. 47:1100–1105.Google Scholar
  93. Little, J. G., and Hanawalt, P. C., 1973, Thymineless death and ultraviolet sensitivity in Micrococcus radiodurans, J. Bacteriol. 113:233–240.Google Scholar
  94. Mallette, M. F., 1969, Evaluation of growth by physical and chemical means, in: Methods in Microbiology (J. R. Norris and D. W. Ribbons, eds.), Vol. 1, pp. 521–566, Academic Press, New York.Google Scholar
  95. McGrath, R. A., and Williams, R. W., 1966, Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces, Nature 212:534–535.Google Scholar
  96. Mitchel, R. E. J., 1973, Micrococcus radiodurans 5′-nucleotidase, Biochim. Biophys. Acta 309:116–126.Google Scholar
  97. Mitchel, R. E. J., 1975a, Involvement of hydroxyl radicals in the release by ionizing radiation of a cell surface nuclease from Micrococcus radiodurans, Radiat. Res. 64:321–330.Google Scholar
  98. Mitchel, R. E. J., 1975b, Origin of cell surface proteins released from Micrococcus radiodurans by ionizing radiation, Radiat. Res. 64:380–387.Google Scholar
  99. Mitchel, R. E. J., 1976, Ionizing radiation damage in Micrococcus radiodurans cell wall: release of polysaccharide, Radiat. Res. 66:158–169.Google Scholar
  100. Mitchel, R. E. J., 1980, Micrococcus radiodurans surface exonuclease: dimer to monomer conversion by ionizing radiation-generated aqueous free radicals, Biochim. Biophys. Acta 621:138–146.Google Scholar
  101. Mortimer, R. K., 1958, Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae, Radiat. Res. 9:312–326.Google Scholar
  102. Moseley, B. E. B., 1963, The variation in X-ray resistance of Micrococcus radiodurans and some of its less-pigmented mutants, Int. J. Radiat. Biol. 6:489.Google Scholar
  103. Moseley, B. E. B., 1967a, The repair of DNA in Micrococcus radiodurans following ultraviolet irradiation, J. Gen. Microbiol. 48:vi.Google Scholar
  104. Moseley, B. E. B., 1967b, The isolation and some properties of radiation-sensitive mutants of Micrococcus radiodurans, J. Gen. Microbiol. 49:293–300.Google Scholar
  105. Moseley, B. E. B., 1969, Repair of ultraviolet radiation damage in sensitive mutants of Micrococcus radiodurans, J. Bacteriol. 97:647–652.Google Scholar
  106. Moseley, B. E. B., and Copland, H. J. R., 1975a, Involvement of a recombination repair function in disciplined cell division of Micrococcus radiodurans, J. Gen. Microbiol. 86:343–357.Google Scholar
  107. Moseley, B. E. B., and Copland, H. J. R., 1975b, Isolation and properties of a recombination-deficient mutant of Micrococcus radiodurans, J. Bacteriol. 121:422–428.Google Scholar
  108. Moseley, B. E. B., and Copland, H. J. R., 1976, The rate of recombination repair and its relationship to the radiation-induced delay in DNA synthesis in Micrococcus radiodurans, J. Gen. Microbiol. 93:251–258.Google Scholar
  109. Moseley, B. E. B., and Copland, H. J. R., 1978, Four mutants of Micrococcus radiodurans defective in the ability to repair DNA damaged by mitomycin C., two of which have wild-type resistance to ultraviolet radiation, Mol. Gen. Genet. 160:331–337.Google Scholar
  110. Moseley, B. E. B., and Evans, D. M., 1981, Use of transformation to investigate the nuclear structure and segregation of genomes in Micrococcus radiodurans, in: Transformation 1980 (M. Polsinelli and G. Mazza, eds.) pp. 371–379, Cotswold Press, Oxford.Google Scholar
  111. Moseley, B. E. B., and Laser, H., 1965a, Repair of X-ray damage in Micrococcus radiod-urans, Proc. R. Soc. Lond. (Biol.) 162:210–222.Google Scholar
  112. Moseley, B. E. B., and Laser, H., 1965b, Similarity of repair of ionizing and ultra-violet radiation damage in Micrococcus radiodurans, Nature 206:373–375.Google Scholar
  113. Moseley, B. E. B., and Mattingly, A., 1971, Repair of irradiated transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans, J. Bacteriol. 105:976–983.Google Scholar
  114. Moseley, B. E. B., and Schein, A. H., 1964, Radiation resistance and deoxyribonucleic acid base composition of Micrococcus radiodurans, Nature 203:1298–1299.Google Scholar
  115. Moseley, B. E. B., and Setlow, J. K., 1968, Transformation in Micrococcus radiodurans and the ultraviolet sensitivity of its transforming DNA, Proc. Natl. Acad. Sci. USA 61:176–183.Google Scholar
  116. Moseley, B. E. B., and Williams, E., 1977, Repair of damaged DNA in bacteria, in: Advances in Microbial Physiology (A. H. Rose and D. Tempest, eds.), Vol. 16, pp. 99–156, Academic Press, London and New York.Google Scholar
  117. Moseley, B. E. B., Mattingly, A., and Shimmin, M., 1972a, Isolation and some properties of temperature-sensitive mutants of Micrococcus radiodurans defective in DNA synthesis, J. Gen. Microbiol. 70:399–409.Google Scholar
  118. Moseley, B. E. B., Mattingly, A., and Copland, H. J. R., 1972b, Sensitization to radiation by loss of recombination ability in a temperature-sensitive DNA mutant of Micrococcus radiodurans held at its restrictive temperature, J. Gen. Microbiol. 72:329–338.Google Scholar
  119. Murray, R. G. E., and Robinow, C. F., 1958, Cytological studies of a tetrad-forming coccus, in: VIIth International Congress for Microbiology, Stockholm, Abstracts of Communications (G. Tunevall, ed.), p. 427, Almquist and Wikseus, Uppsala.Google Scholar
  120. Myers, D. K., and Johnson, L. D., 1977, Effects of oxygen during 7-irradiation of Micrococcus radiodurans, Int. J. Radiat. Biol. 32:277–280.Google Scholar
  121. Okazawa, Y., and Matsuyama, A., 1967, A note on radiation resistance of Micrococcus radiodurans, Agric. Biol. Chem. 31:1505–1508.Google Scholar
  122. Palcie, B., and Skarsgard, L. D., 1975, Absence of ultrafast processes of repair of single-strand breaks in mammalian DNA, Int. J. Radiat. Biol. 27:121–133.Google Scholar
  123. Pritchard, R. H., and Zaritsky, A., 1970, Effect of thymine concentration on the replication velocity of DNA in a thymineless mutant of Escherichia coli, Nature 226:126–132.Google Scholar
  124. Raj, H. D., Duryee, F. L., Deeney, A. M., Wang, C. H., Anderson, A. W., and Elliker, P. R., 1960, Utilisation of carbohydrates and amino acids by Micrococcus radiodurans, Can. J. Microbiol. 6:289–298.Google Scholar
  125. Roots, R., and Smith, K. C., 1974, On the nature of the oxygen effect on X-ray induced single strand breaks in mammalian cells, Int. J. Radiat. Biol. 26:467–480.Google Scholar
  126. Rupp, W. D., and Howard-Flanders, P., 1968, Discontinuities in the DNA synthesized in an excision defective strain of Escherichia coli following ultraviolet irradiation, J. Mol. Biol. 31:291–304.Google Scholar
  127. Rupp, W. D., Wilde, C. E., Reno, D. L., and Howard-Flanders, P., 1971, Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli, J. Mol. Biol. 61:25–44.Google Scholar
  128. Sadoff, H. L., Shimei, B., and Ellis, S., 1979, Characterization of Azotobacter vinelandii deoxyribonucleic acid and folded chromosomes, J. Bacteriol. 138:871–877.Google Scholar
  129. Sapora, O., Fielden, E. M., and Loverock, P. S., 1975, The application of rapid tysis techniques in radiobiology. 1. The effect of oxygen and radiosensitizers on DNA strand break production and repair in E. coli B/r, Radiat. Res. 64:431–442.Google Scholar
  130. Schein, A. H., 1966, The deoxyribonucleic acid of Micrococcus radiodurans, Biochem. J. 101:647–650.Google Scholar
  131. Schein, A., Berdahl, B. J., Low, M., and Borek, E., 1972, Deficiency of the DNA of Micrococcus radiodurans in methyladenine and methylcytosine, Biochim. Biophys. Acta 272:481–485.Google Scholar
  132. Schleifer, K. H., and Kandier, O., 1972, Peptidoglycan types of bacterial cell walls and their taxonomic implications, Bacteriol. Rev. 36:407–477.Google Scholar
  133. Sedgwick, S. G., 1976, Misrepair of overlapping daughter strand gaps as a possible mechanism for UV induced mutagenesis in uvr strains of Escherichia coli: a general model for induced mutagenesis by misrepair (SOS repair) of closely spaced DNA lesions, Mutat. Res. 41:185–199.Google Scholar
  134. Serianni, R. W., and Bruce, A. K., 1968, Radioresistance of Micrococcus radiodurans during the growth cycle, Radiat. Res. 36:193–207.Google Scholar
  135. Setlow, J. K., and Boling, M. E., 1965, The resistance of Micrococcus radiodurans to ultraviolet radiation II. Action spectra for killing, delay in DNA synthesis and thymine dimerisation, Biochim. Biophys. Acta 108:259–265.Google Scholar
  136. Setlow, J. K., and Duggan, D. E., 1964, The resistance of Micrococcus radiodurans to ultraviolet radiation I. Ultraviolet-induced lesions in the cell’s DNA, Biochim. Biophys. Acta 87:664–668.Google Scholar
  137. Setlow, R. B., and Carrier, W. L., 1964, The disappearance of thymine dimers from DNA: an error-correcting mechanism, Proc. Natl. Acad. Sci. USA 51:226–231.Google Scholar
  138. Setlow, R. B., and Setlow, J. K., 1972, Effects of radiation on polynucleotides, Annu. Rev. Biophys. Bioeng. 1:293–346.Google Scholar
  139. Shapiro, A., DiLello, D., Loudis, M. C., Keller, D. E., and Hutner, S. H., 1977, Minimal requirements in defined media for improved growth of some radio-resistant pink tetra-cocci, Appl. Environ. Microbiol. 33:1129–1133.Google Scholar
  140. Sleytr, U. B., Kocur, M., Dauert, A. M., and Thornley, M. J., 1973, A study by freeze-etching of the fine structure of Micrococcus radiodurans, Arch. Microbiol. 94:77–87.Google Scholar
  141. Störl, H. J., Simon, H., and Barthelmes, H., 1979, Immunochemical detection of N6 methyl adenine in DNA, Biochim. Biophys. Acta 564:23–30.Google Scholar
  142. Suhadi, F., Kitayama, S., Okazawa, Y., and Matsuyama, A., 1971, Isolation of radiosensitive mutants of Micrococcus radiodurans, Agric. Biol. Chem. 35:1644–1647.Google Scholar
  143. Suhadi, F., Kitayama, S., Okazawa, Y., and Matsuyama, A., 1972, Isolation and some radiobiological properties of mutants of Micrococcus radiodurans sensitive to ionizing radiation, Radiat. Res. 49:197–212.Google Scholar
  144. Sweet, D. M., and Moseley, B. E. B., 1974, Accurate repair of ultraviolet-induced damage in Micrococcus radiodurans, Mutat. Res. 23:311–318.Google Scholar
  145. Sweet, D. M., and Moseley, B. E. B., 1976, The resistance of Micrococcus radiodurans to killing and mutation by agents which damage DNA, Mutat. Res. 34:175–186.Google Scholar
  146. Targovnik, H. S., and Hariharan, P. V., 1980, Excision repair of 5,6-dihydroxydihydrothy-mine from the DNA of Micrococcus radiodurans, Radiat. Res. 83:360–363.Google Scholar
  147. Tempest, P. R., 1978, Mutagenesis and DNA repair in Micrococcus radiodurans, Ph.D. thesis, University of Edinburgh, Scotland, United KingdomGoogle Scholar
  148. Tempest, P. R., and Moseley, B. E. B., 1978, Role of the gene mtcA in the resistance of Micrococcus radiodurans to the lethal effects of mitomycin C and alkylation mutagenesis, in: DNA Repair Mechanisms, (P. C. Hanawalt, E. C. Friedberg, and C. F. Fox, eds.) pp. 283–286, Academic Press, New York.Google Scholar
  149. Tempest, P. R., and Moseley, B. E. B., 1980, Defective excision repair in a mutant of Micrococcus radiodurans hypermutable by some monofunctional alkylating agents, Mol. Gen. Genet. 179:191–199.Google Scholar
  150. Tempest, P. R., and Moseley, B. E. B., 1982, Lack of ultraviolet mutagenesis in radiation-resistant bacteria, Mutat. Res. Lett. 104:275–280.Google Scholar
  151. Thornley, M. J., Home, R. W., and Dauert, A. M., 1965, The fine structure of Micrococcus radiodurans, Arch. Microbiol. 51:267–289.Google Scholar
  152. Tirgari, S., and Moseley, B. E. B., 1980, Transformation in Micrococcus radiodurans: Measurement of various parameters and evidence for multiple, independently segregating genomes per cell, J. Gen. Microbiol. 119:287–296.Google Scholar
  153. Town, CD., Smith, K. C., and Kaplan, H. S., 1971a, DNA polymerase required for rapid repair of X-ray induced DNA strand breaks in vivo, Science 172:851–854.Google Scholar
  154. Town, C. D., Smith, K. C., and Kaplan, H. S., 1971b, Production and repair of radiochemical damage in Escherichia coli deoxyribonucleic acid; its modification by culture conditions and relation to survival, J. Bacteriol. 105:127–135.Google Scholar
  155. Town, C. D., Smith, K. C., and Kaplan, H. S., 1972, Influence of ultrafast repair processes (independent of DNA polymerase I) on the yield of DNA single-strand breaks in Escherichia coli K-12 irradiated in the presence and absence of oxygen, Radiat. Res. 52:99–114.Google Scholar
  156. Town, C. D., Smith, K. C., and Kaplan, H. S., 1973, The repair of DNA single-strand breaks in E. coli K-12 X-irradiated in the presence or absence of oxygen; the influence of repair on survival, Radiat. Res. 55:334–345.Google Scholar
  157. Varghese, A. J., and Day, R. S., 1970, Excision of cytosine-thymine adduct from the DNA of ultraviolet-irradiated Micrococcus radiodurans, Photochem. Photobiol. 11:511–517.Google Scholar
  158. Vilenchik, M. M., 1970, Change in the sensitivity of bacterial cells to ultraviolet and gamma radiation during aging, Radiobiologiya 10:201–204.Google Scholar
  159. Vukovic-Nagy, B., Fox, B. W., and Fox, M., 1974, The release of a DNA fragment after X-irradiation of Micrococcus radiodurans, Int. J. Radiat. Biol. 25:329–337.Google Scholar
  160. Witkin, E. M., 1976, Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Rev. 40:869–907.Google Scholar
  161. Work, E., 1964, Amino-acids of walls of Micrococcus radiodurans, Nature 201:1107–1109.Google Scholar
  162. Work, E., and Griffiths, H., 1968, Morphology and chemistry of cell walls of Micrococcus radiodurans, J. Bacteriol. 95:641–657.Google Scholar
  163. Youngs, D. A., and Smith, K. C., 1973, X-ray sensitivity and repair capacity of a polA1 exrA strain of Escherichia coli K-12, J. Bacteriol. 114:121–127.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Bevan E. B. Moseley
    • 1
  1. 1.Department of Microbiology, School of AgricultureUniversity of EdinburghEdinburghScotland

Personalised recommendations