Photoacoustic Spectroscopy and Related Techniques Applied to Biological Materials

  • Thomas A. Moore


The absorption of light by living organisms is important both as a probe of biochemical processes at the molecular level, and as the stimulus for myriad photobiological processes. Typically, light absorption may be characterized by measuring either the transmission or the reflectance spectrum; however, most biological systems in situ are not amenable to these measurements due to opacity, scattering, poorly defined or heterogeneous surface properties, etc. Thus, it is of interest to have a technique for measuring the absorption of light that is less constrained by the nature of the material under study. Photoacoustic spectroscopy (PAS) clearly meets this requirement while offering new information that arises uniquely from the combination of spectroscopic and calorimetric phenomena. In certain respects PAS is a qualitative spectroscopic technique, the spectra (except in special cases) are only similar to conventional absorption spectra; also for complex biological samples there is no general method of extracting extinction coefficients or concentrations from the observed signal. On the other hand, photophysical parameters such as quantum yields, lifetimes, and energies, characterizing the various excited states and relaxation pathways of photobiological systems in situ, can sometimes be measured by PAS.


Mirage Effect Photoacoustic Spectroscopy Purple Membrane Thermal Diffusion Length Photo Acoustic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aamodt, L. C., Murphy, J. C., and Parker, J. G., 1977, Size considerations in the design of cells for photoacoustic spectroscopy, J. Appl. Phys. 48:927–933.CrossRefGoogle Scholar
  2. Adams, M. J., and Kirkbright, G. F., 1977, Analytical optoacoustic spectroscopy part III. The optoacoustic effect and thermal diffusivity, Analyst 102:281–292.CrossRefGoogle Scholar
  3. Adams, M. J., Beadle, B. C., King, A. A., and Kirkbright, G. F., 1976, Analytical optoacoustic spectrometry part II. Ultraviolet and visible optoacoustic spectra of some inorganic, biochemical and phytochemical samples, Analyst 101:553–561.CrossRefGoogle Scholar
  4. Adams, M. J., Highfield, J. G., and Kirkbright, G. F., 1977, Determination of absolute fluorescence quantum efficiency of quinine bisulfate in aqueous medium by optoacoustic spectrometry, Anal. Chem. 49:1850–1852.CrossRefGoogle Scholar
  5. Adams, M. J., Highfield, J. G., and Kirkbright, G. F., 1980, Determination of the absolute quantum efficiency of luminescence of solid materials employing photoacoustic spectroscopy, Anal. Chem. 52:1260–1264.CrossRefGoogle Scholar
  6. Adams, M. J., Highfield, J. G., and Kirkbright, G. F., 1981, Determination of the absolute quantum efficiency of sodium salicylate using photoacoustic spectroscopy, Analyst 106:850–854.CrossRefGoogle Scholar
  7. Arata, H., and Parson, W. W., 1981, Enthalpy and volume changes accompanying electron transfer from P870 to quinones in Rhodopseudomonas sphaeroides reaction centers, Biochim. Biophys. Acta 636:70–81.CrossRefGoogle Scholar
  8. Arata, H., and Parson, W. W., 1982, Enthalpy and volume changes accompanying electron transfer from P870 to the primary and secondary quinones in photosynthetic reaction centers, in: Function of Quinones in Energy Conserving Systems (B. L. Trumpower, ed.), Academic Press, New York (in press).Google Scholar
  9. Balasubramanian, D., and Rao, CH. M., 1981, Yearly Review, Photoacoustic spectroscopy of biological systems, Photochem. Photobiol. 34:749–752.Google Scholar
  10. Bechthold, P. S., Kohl, K.-D., and Sperling, W., 1982, Low temperature photoacoustic spectroscopy of the purple membrane of Halobacterium halobium, Appl. Opt. 21:127–132.CrossRefGoogle Scholar
  11. Bennett, H. S., and Forman, R. A., 1977, Frequency dependence of photoacoustic spectroscopy: Surface-and bulk-absorption coefficients,J. Appl. Phys. 48:1432–1436.CrossRefGoogle Scholar
  12. Betteridge, D., Lilley, T., and Meyler, P. J., 1979, Computer generated optoacoustic spectra for a two-layer solid sample system, Fresenius Z. Anal. Chem. 296:28–31.CrossRefGoogle Scholar
  13. Boccara, A. C., Fournier, D., and Badoz, J., 1980a, Thermo-optical spectroscopy: Detection by the “mirage effect,” Appl. Phys. Lett. 36:130–132.CrossRefGoogle Scholar
  14. Boccara, A. C., Fournier, D., Jackson, W., and Amer, N. M., 1980b, Sensitive photothermal deflection technique for measuring absorption in optically thin media, Opt. Lett. 5:377–379.CrossRefGoogle Scholar
  15. Boucher, F., and LeBlanc, R. M., 1981, Photoacoustic spectroscopy of cattle visual pigment at low temperature, Biochem. Biophys. Res. Commun. 100:385–390.CrossRefGoogle Scholar
  16. Bults, G., Horwitz, B. A., Malkin, S., and Cahen, D., 1981, Frequency-dependent photoacoustic signals from leaves and their relation to photosynthesis, FEBS Lett. 129:44–46.CrossRefGoogle Scholar
  17. Bults, G., Nordal, P.-E., and Kanstad, S. O., 1982, In vivo studies of photosynthesis in attached leaves by means of photothermal radiometry, Biochim. Biophys. Acta 682:234–237.CrossRefGoogle Scholar
  18. Cahen, D., 1981, Photoacoustic cell for reflection and transition measurements, Rev. Sci. Instrum. 52:1306–1310.CrossRefGoogle Scholar
  19. Cahen, D., Garty, H., and Caplan, S. R., 1978a, Spectroscopy and energetics of the purple membrane of Halobacterium halobium, FEBS Lett. 91:131–134.CrossRefGoogle Scholar
  20. Cahen, D., Malkin, S., and Lerner, E. I., 1978b, Photoacoustic spectroscopy of chloroplast membranes; listening to photosynthesis, FEBS Lett. 91:339–342.CrossRefGoogle Scholar
  21. Cahen, D., Bults, G., Carty, H., and Malkin, S., 1980, Photoacoustics in life sciences, J. Biochem. Biophys. Methods 3:293–310.CrossRefGoogle Scholar
  22. Callis, J. B., 1976, The calorimetric detection of excited states, J. Res. Nat. Bur. Stand. 80A:413–419.Google Scholar
  23. Callis, J. B., Parson, W. W., andGouterman, M., 1972, Fast changes of enthalpy and volume on flash excitation of Chromatium chromatophores, Biochim. Biophys. Acta. 267:348–362.CrossRefGoogle Scholar
  24. Campbell, S. D., Yee, S. S., and Afromowitz, M. A., 1977, Two applications of photoacoustic spectroscopy to measurements in dermatology, J. Bioeng. 1:185–188.Google Scholar
  25. Campbell, S. D., Yee, S. S., and Afromowitz, M. A., 1979, Application of photoacoustic spectroscopy to problems in dermatology research, IEEE Trans. Biomed. Eng. EME-26:220–227.CrossRefGoogle Scholar
  26. Canaani, O., Cahen, D., and Malkin, S., 1982, Photosynthetic chromatic transitions and Emerson enhancement effects in intact leaves studied by photoacoustics, FEBS Lett. 150:142–146.CrossRefGoogle Scholar
  27. Castleden, S. L., Elliott, C. M., Kirkbright, G. F., and Spillane, D. E. M., 1979, Quantitative examination of thin-layer chromatography plates by photoacoustic spectroscopy, Anal. Chem. 51:2152–2153.CrossRefGoogle Scholar
  28. Chalmers, J. M., Stay, B. J., Kirkbright, G. F., Spillane, D. E., and Beadle, B. C., 1981, Some observations on the capabilities of photoacoustic Fourier transform infrared spectroscopy (PAFTIR), Analyst 106:1179–1186.CrossRefGoogle Scholar
  29. Ducharme, D., Tessier, A., and LeBlanc, R. M., 1979, Design and characteristics of a cell for photoacoustic spectroscopy of condensed matter. Rev. Sci. Instrum. 50:1461–1462.CrossRefGoogle Scholar
  30. Fernelius, N. C., 1980, Extension of the Rosencwaig-Gersho photoacoustic spectroscopy theory to include effects of a sample coating,J. Appl. Phys. 51:650–654.CrossRefGoogle Scholar
  31. Fishman, V. A., and Bard, A. J., 1981, Open-ended photoacoustic spectroscopy cell for thin-layer chromatography and other applications, Anal. Chem. 53:102–105.CrossRefGoogle Scholar
  32. Fournier, D., Boccara, A. C., and Badoz, J., 1978, Dichroism measurements in photoacoustic spectroscopy, Appl. Phys. Lett. 32:640–642.CrossRefGoogle Scholar
  33. Fuchsman, W. H., and Silversmith, A. J., 1979, General method for overcoming photoacoustic saturation in highly colored organic and inorganic solids, Anal. Chem. 51:589–590.CrossRefGoogle Scholar
  34. Garty, H., Cahen, D., and Caplan, S. R., 1978, Use of photoacoustic spectroscopy in the study of the bioenergetics of purple membranes, in: Energetics and Structure of Halophilic Microorganisms, (S. R. Caplan and M. Ginzburg, eds.), pp. 253–259, Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  35. Garty, H., Cahen, D., and Caplan, S. R., 1980, Photoacoustic calorimetry of Halobacierium halobium photocycle, Biochem. Biophys. Res. Commun. 97:200–206.CrossRefGoogle Scholar
  36. Garty, H., Caplan, S. R., and Cahen, D., 1981, Photoacoustic photocalorimetry and spectroscopy of Halobacterium halobium purple membranes, Biophys. J. 37:405–415.CrossRefGoogle Scholar
  37. Gray, R. C., Fishman, V. A., and Bard, A. J., 1977, Simple sample cell for examination of solids and liquids by photoacoustic spectroscopy, Anal. Chem. 49:697–700.CrossRefGoogle Scholar
  38. Helander, P., Lundström, I., and McQueen, D., 1981, Photoacoustic study of layered samples, J. Appl. Phys. 52:1146–1151.CrossRefGoogle Scholar
  39. Inoue, Y., Watanabe, A., and Shibata, K., 1979, Transient variation of photoacoustic signal from leaves accompanying photosynthesis, FEBS Lett. 101:321–323.CrossRefGoogle Scholar
  40. Kanstad, S. O., Nordal, P. E., Hellgren, L., and Vincent, J., 1981, Infrared photoacoustic spectroscopy of skin lipids, Naturwissenschaften 68:47–48.CrossRefGoogle Scholar
  41. Kanstad, S. O., Cahen, D., and Malkin, S., 1983, Simultaneous detection of photosynthetic energy storage and oxygen evolution in leaves by photothermal radiometry and pho-toacoustics, Biochim. Biophys. Acta 722:182–189.CrossRefGoogle Scholar
  42. Krishnan, K., 1981, Some applications of Fourier transform infrared photoacoustic spectroscopy, Appl. Spectrosc. 35:549–557.CrossRefGoogle Scholar
  43. Lasser-Ross, N., Malkin, S., and Cahen, D., 1980, Photoacoustic detection of photosynthetic activities in isolated broken chloroplasts, Biochim. Biophys. Acta 593:330–341.CrossRefGoogle Scholar
  44. Lerman, S., Yamanashi, B. S., Palmer, R. A., Roark, J. C., and Borkman, R., 1978, Photoacoustic, fluoresence and light transmission spectra of normal, aging and cataractous lenses, Ophthalmic Res. 10:168–176.CrossRefGoogle Scholar
  45. Lin, J. W., and Dudek, L. P., 1979, Signal saturation effect and analytical techniques in photoacoustic spectroscopy of solids, Anal. Chem. 51:1627–1632.CrossRefGoogle Scholar
  46. Lloyd, L. B., Burnham, R. K., Chandler, W. L., Eyring, E. M., and Farrow, M. M., 1980, Fourier transform photoacoustic visible spectroscopy of solids and liquids, Anal. Chem. 52:1595–1598.CrossRefGoogle Scholar
  47. Mackenthun, M. L., Tom, R. D., and Moore, T. A., 1979, Lobster shell carotenoprotein organization in situ studied by photoacoustic spectroscopy, Nature 279:265–266.CrossRefGoogle Scholar
  48. Malkin, S., and Cahen, D., 1979, Photoacoustic spectroscopy and radiant energy conversion: Theory of the effect with special emphasis on photosynthesis, Photochem. Photobiol. 29:803–813.CrossRefGoogle Scholar
  49. Malkin, S., and Cahen, D., 1981, Dependence of photoacoustic signal on optical absorption coefficient in optically dense liquids, Anal. Chem. 53:1426–1432.CrossRefGoogle Scholar
  50. Mandelis, A., Teng, Y. C., and Royce, B. S. H., 1979, Phase measurements in the frequency domain photoacoustic spectroscopy of solids, J. Appl. Phys. 50:7138–7146.CrossRefGoogle Scholar
  51. Maugh, T. H. II, 1980, Fourier transform comes to photoacoustic spectroscopy, Science 208:167.CrossRefGoogle Scholar
  52. McClelland, J. F., and Kniseley, R. N., 1976, Signal saturation effects in photoacoustic spectroscopy with applicability to solid and liquid samples, Appl. Phys. Lett. 28:467–469.CrossRefGoogle Scholar
  53. McDonald, F. A., 1980, Three-dimensional heat flow in the photoacoustic effect, Appl. Phys. Lett. 36:123–125.CrossRefGoogle Scholar
  54. McDonald, F. A., 1981, Three-dimensional heat flow in the photoacoustic effect-II: Cell-wall conduction, J. Appl. Phys. 52:381–385.CrossRefGoogle Scholar
  55. McDonald, F. A., and Wetsel, G. C. Jr., 1978, Generalized theory of the photoacoustic effect, J. Appl. Phys. 49:2313–2322.CrossRefGoogle Scholar
  56. Moore, T. A., Benin, D., and Tom, R., 1982, Photoacoustic measurement of photophysical properties. Lowest triplet state energy of a free base prophyrin, J. Am. Chem. Soc. 104:7356–7357.CrossRefGoogle Scholar
  57. Monta, M., 1981, Theory and experiments on the photoacoustic effect in double-layer solids, Jpn. J. Appl. Phys. 20:835–842.CrossRefGoogle Scholar
  58. Murphy, J. C., and Aamodt, L. C., 1977, Photoacoustic spectroscopy of luminescent solids: Ruby, J. Appl. Phys. 48:3502–3509.CrossRefGoogle Scholar
  59. Nordal, P.-E., and Kanstad, S. O., 1979, Photothermal radiometry, Physica Scripta 20:659–662.CrossRefGoogle Scholar
  60. Nordal, P.-E., and Kanstad, S. O., 1981, Visible-light spectroscopy by photothermal radiometry using an incoherent source, Appl. Phys. Lett. 38:486–488.CrossRefGoogle Scholar
  61. O’Hara, E. P., Tom, R., and Moore, T. A., 1981, Absorption of light by pigments in lichens studied by photoacoustic spectroscopy, Technical Digest, Second International Topical Meeting on Photoacoustic Spectroscopy, June 22–25, 1981, Optical Society of America, Washington, D.C. Abs. Tu B29.Google Scholar
  62. Ort, D. R., and Parson, W. W., 1978, Flash-induced volume changes of bacteriorhodopsin-containing membrane fragments and their relationship to proton movements and absorption transients, J. Biol. Chem. 253:6158–6164.Google Scholar
  63. Ort, D. R., and Parson, W. W., 1979a, The quantum yield of flash-induced proton release by bacteriorhodopsin-containing membrane fragments, Biophys. J. 25:341–354.CrossRefGoogle Scholar
  64. Ort, D. R., and Parson, W. W., 1979b, Enthalpy changes during the photochemical cycle of bacteriorhodopsin, Biophys. J. 25:355–364.CrossRefGoogle Scholar
  65. Ortner, P. B., and Rosencwaig, A., 1977, Photoacoustic spectroscopic analysis of marine phytoplankton, Hydrobiologia 56:3–6.CrossRefGoogle Scholar
  66. Palmer, R. A., Roark, J. C., Robinson, J. C., and Howell, J. L., 1979, Photoacoustic detection of natural circular dichroism in solids, Technical Digest, Topical Meeting on Photoacoustic Spectroscopy, August 1–3, 1979, Optical Society of America, Washington, D.C. Abs. ThA 3–l.Google Scholar
  67. Pichon, C., LeLiboux, M., Fournier, D., and Boccara, A. C., 1979, Variable-temperature photoacoustic effect: Application to phase transition, Appl. Phys. Lett. 35:435–437.CrossRefGoogle Scholar
  68. Pines, E., 1978, A new technique to assess sunscreen effectiveness, J. Soc. Cosmet. Chem. 29:559–564.Google Scholar
  69. Poulet, P., Chambron, J., and Unterreiner, R., 1980, Quantitative photoacoustic spectroscopy applied to thermally thick samples, J. Appl. Phys. 51:1738–1742.CrossRefGoogle Scholar
  70. Quimby, R. S., and Yen, W. M., 1979, Three-dimensional heat-flow effects in photoacoustic spectroscopy of solids, Appl. Phys. Lett. 35:43–45.CrossRefGoogle Scholar
  71. Quimby, R. S., and Yen, W. M., 1980, Photoacoustic measurement of the ruby quantum efficiency,J. Appl. Phys. 51:1780–1782.CrossRefGoogle Scholar
  72. Renard, M., and Delmelle, M., 1980, Quantum efficiency of light-driven proton extrusion in Halobacterium halobium, Biophys. J. 32:993–1006.CrossRefGoogle Scholar
  73. Renard, M., and Delmelle, M., 1981, The photochemical quantum yield of bacteriorhodopsin in pH independent, FEBS Lett. 128:245–248.CrossRefGoogle Scholar
  74. Rockley, M. G., Davis, D. M., and Richardson, H. H., 1980, Fourier transformed infrared photoacoustic spectroscopy of biological materials, Science 210:918–920.CrossRefGoogle Scholar
  75. Rosencwaig, A., 1978, Photoacoustic spectroscopy, Adv. Electr. Electron Phys. 46:207–311.Google Scholar
  76. Rosencwaig, A., and Gersho, A., 1976, Theory of photoacoustic effect with solids, J. Appl. Phys. 47:64–69.CrossRefGoogle Scholar
  77. Rosencwaig, A., and Pines, E., 1977a, A photoacoustic study of newborn rat stratum cor-neum, Biochim. Biophys. Acta 493:10–23.Google Scholar
  78. Rosencwaig, A., and Pines, E., 1977b, Stratum corneum studies with photoacoustic spectroscopy, J. Invest. Dermatol. 69:296–298.CrossRefGoogle Scholar
  79. Saxe, J. D., Faulkner, T. R., and Richardson, F. S., 1979, photoacoustic detection of circular dichroism, Chem. Phys. Lett. 68:71–76.CrossRefGoogle Scholar
  80. Schneider, S., Möller, U., and Coufal, H., 1982, Influence of photoinduced isomerization on the photoacoustic spectra of DODCI, Appl. Opt. 21:44–48.CrossRefGoogle Scholar
  81. Smith, K. C., 1977, New topics in photobiology, in: The Science of Photobiology, (K. C. Smith, ed.), pp. 397–417, Plenum, N.Y.CrossRefGoogle Scholar
  82. Somoano, R. B., 1978, Photoacoustic spectroscopy of condensed matter, Angew. Chem. Int. Ed. Engl. 17:238–245.CrossRefGoogle Scholar
  83. Tilgner, R., 1981, Photoacoustic spectroscopy with light scattering samples, Appl. Opt. 20:3780–3786.CrossRefGoogle Scholar
  84. Tom, R. D., O’Hara, E. P., and Benin, D., 1982, A generalized model of photothermal radiometry, J. Appl. Phys. 53:5392–5400.CrossRefGoogle Scholar
  85. Yoon, G. J., Lee, T. Y., O’Hara, E. P., Moore, T. A., Yoon, M., and Song, P. S., 1981, The spectroscopy of Porphyra Sp. in situ, Can. J. Spectrosc. 26:148–157.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Thomas A. Moore
    • 1
  1. 1.Department of ChemistryArizona State UniversityTempeUSA

Personalised recommendations