Photodynamic Agents as Tools for Cell Biology

  • Takashi Ito


A light quantum, upon absorption, can elevate the absorbing substance to an excited state and it, in turn, may affect a critical component of the cell, under certain conditions, by using this excitation energy. Such a substance can either be exogeneous, or a normal component of the cell, and is called a photosensitizer. The extent of the cellular effects produced by a photosensitizer is dependent upon a number of factors that include: (i) how easy the sensitizer is excited to a particular state by light of a given wavelength, (ii) how accessible the sensitizer is to the particular site for the relevant photobiological interaction in the cell, and (iii) the importance of the biological role played by the affected substrate in the cell. Contributions of all these factors must be properly worked out before any systematic view on biological photosensitization can be constructed.


Yeast Cell Methylene Blue Singlet Oxygen Toluidine Blue Acridine Orange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, A. C., Magnus, I. A., and Young, M. R., 1966, Role of lysosomes and of cell membranes in photosensitization, Nature 209:874–878.Google Scholar
  2. Almgren, M., and Thomas, J. K., 1980, Inteifacial electron transfer involving radical ions of carotene and diphenylexatriene in micelles and vesicles, Photochem. Photobiol. 31:329–335.Google Scholar
  3. Amagasa, J., 1981, Dye binding and photodynamic action, Photochem. Photobiol. 33:947–956.Google Scholar
  4. Amagasa, J., and Ito, T., 1970, Photoinactivation of transfer RNA in the presence of acridine orange, Radiat. Res. 43:45–55.Google Scholar
  5. Anders, A., Lamprecht, I., Schaefer, H., and Zacharias, H., 1976, The use of dye lasers for spectrocopic investigations and photodynamic therapy of human skin, Arch. Dermatol. Res. 255:211–214.Google Scholar
  6. Arnason, T., Chan, G. F. Q., Wat, C. K., Downum, K., and Towers, G. H. N., 1981, Oxygen requirement for near-UV mediated cytotoxicity of a-terthienyl to Escherichia coli and Saccharomyces cerevisiae, Photochem. Photobiol. 33:821–824.Google Scholar
  7. Austen, J. D., McConnell, S., Carrano, C. J., andTsutsui, M., 1978, Intracellular localization of meso-tetra(p-sulfophenyl) porphine: A potential tumor localizing agent, Cancer Treat. Rep. 62:511–518.Google Scholar
  8. Bagchi, B., and Basu, S., 1979, Role of dye molecules remaining outside the cell during photodynamic inactivation of Escherichia coli in the presence of acriflavine, Photochem. Photobiol. 29:403–406.Google Scholar
  9. Bagno, O., Soulignac, J. C., and Joussot-Dubien, J., 1979, pH dependence of sensitized photooxidation in micellar anionic and cationic surfactants, using thiazine dyes, Photochem. Photobiol. 29:1079–1081.Google Scholar
  10. Basu, S., and Bagchi, B., 1978, Mutation in Escherichia coli during photodynamic inactivation and subsequent holding in buffer, FEBS Lett. 96:26–30.Google Scholar
  11. Basu, S., and Bagchi, B., 1982, Effect of liquid holding on the repair of photoinduced damages in acriflavine sensitized Escherichia coli cells, Photochem. Photobiol. 35:279–282.Google Scholar
  12. Bellin, J. S., 1964, Properties of pigments in the bound state: A review, Photochem. Photobiol. 4:33–44.Google Scholar
  13. Bellin, J. S., 1968, Photophysical and photochemical effects of dye binding, Photochem. Photobiol. 8:383–392.Google Scholar
  14. Berg, H., 1978, Redox processes during photodynamic damage of DNA. II. A new model for electron exchange and strand breaking, Bioelectrochem. Bioenerg. 5:347–356.Google Scholar
  15. Bezman, S. A., Burtis, P. A., Izod, T. P. J., and Thayer, M. A., 1978, Photodynamic inactivation of E. coli by rose bengal immobilized on polystyrene beads, Photochem. Photobiol. 28:325–329.Google Scholar
  16. Blum, H. F., 1941, Photodynamic Action and Disease Caused by Light, Reinhold, New York.Google Scholar
  17. Bockstahler, L. E., and Cantwell, J. M., 1979, Photodynamic induction of an oncogenic virus in vitro, Biophys. J. 25:209–213.Google Scholar
  18. Bockstahler, L. E., Coohill, T. P., Hellman, K. B., Lytle, C. D., and Roberts, J. E., 1977, Photodynamic therapy for Herpes simplex: A critical review, Pharmacol. Ther. 4:473–499.Google Scholar
  19. Bodaness, R. S., and Chan, P. C., 1977, Singlet oxygen as a mediator in the hematoporphyrin catalized photooxidation of NADPH to NADP+ in deuterium oxide,J. Biol. Chem. 252:8554–8560.Google Scholar
  20. Bonneau, R., de Violet, P. F., and Joussot-Dubien, J., 1974, Mechanism of photoreduction of thiazine dyes by EDTA studied by flash photolysis-II. pH dependence of electron abstraction rate constant of the dyes in their triplet state, Photochem. Photobiol. 19:129–132.Google Scholar
  21. Bonneau, R., Pottier, R., Bagno, O., and Joussot-Dubien, J., 1975, pH dependence of singlet oxygen production in aqueous solutions using thiazine dyes as photosensitizers, Photochem. Photobiol. 21:159–163.Google Scholar
  22. Bonnett, R., Charalambides, A. A., Land, E. J., Sinclair, R. S., Tait, D., and Truscott, T. G., 1980, Triplet states of porphyrin esters, J. Chem. Soc. Faraday I. 76:852–859.Google Scholar
  23. Bourdon, J., and Schnuriger, B., 1967, Photosensitization of organic solids, in: Physics and Chemistry of Organic Solid State (D. Fox, M. M. Labes, and A. Weissberger, eds.), Vol. 3, pp. 59–131, Interscience, New York.Google Scholar
  24. Boye, E., and Moan, J., 1980, The photodynamic effect of hematoporphyrin on DNA, Photochem. Photobiol. 31:223–228.Google Scholar
  25. Buettener, G. R., 1979, The apparent photosensitized generation of hydroxy radical by hematoporphyrin as seen by spin trapping, 7th Am. Soc. Photobiol. (Abstract), p. 178.Google Scholar
  26. Buettener, G. R., and Oberley, L. W., 1979, Superoxide formation by protoporphyrin as seen by spin trapping, FEBS Lett. 98:18–20.Google Scholar
  27. Burns, V. W., 1980, Fluorescent probes in the study of nucleic acids and chromatin in living cells, in: Photochemical and Photobiological Reviews (K. C. Smith, ed.), Vol. 5, pp. 87–103, Plenum Press, New York.Google Scholar
  28. Calberg-Bacq, CM., Siquet-Descans, F., and Piette, J., 1977, Photodynamic effects of proflavine on bacteriophage 0X174 and its isolated DNA, Photochem. Photobiol. 26:573–579.Google Scholar
  29. Caldas, L. R., Menezes, S., and Tyrrell, R. M., 1982, Photodynamic therapy of infections, in: Trends in Photobiology (C. Hélène, M. Charlier, Th. Montenay-Garestier, and G. Laustriat, eds.) pp. 349–366, Plenum Press, New York.Google Scholar
  30. Cameron, I. L., Burton, A. L., and Hiatt, C. W., 1972, Photodynamic action of laser light on cells, in: Concepts in Radiation Cell Biology (G. L. Whitson, ed.), pp. 245–258, Academic Press, New York.Google Scholar
  31. Cannistaro, S., Van de Vorst, A., and Jori, G., 1978, EPR studies on singlet oxygen production by porphyrin, Photochem. Photobiol. 28:257–259.Google Scholar
  32. Castellani, A., (ed.), 1977, Research in Photobiology, Plenum Press, New York.Google Scholar
  33. Chang, C. T., and Dougherty, T. J., 1978, Photoradiation therapy: Kinetics and thermodynamics of porphyrin uptake and loss in normal and malignant cells in culture, Radiat. Res. (Abstract), 74:498.Google Scholar
  34. Christensen, T., and Moan, J., 1979, Photodynamic inactivation of synchronized human cells in vitro in the presence of hematoporphyrin, Cancer Res. 39:3735–3737.Google Scholar
  35. Christensen, T., Volden, G., Moan, J., and Sandquist, T., 1981a, Release of lysosomal enzymes and lactate dehydrogenase due to hematoporphyrin derivative and light irradiation of NHIK 3025 cells in vitro, Ann. Clin. Res. (in press).Google Scholar
  36. Christensen, T., Feren, K., Moan, J., and Pettersen, E., 1981b, Photodynamic effects of hematoporphyrin derivatives on synchronized and asynchronized cells of different origin, Brit. J. Cancer 44:717–724.Google Scholar
  37. Cohn, G. E., and Tseng, H. Y., 1977, Photodynamic inactivation of yeast sensitized by eosin Y, Photochem. Photobiol. 26:465–474.Google Scholar
  38. Copeland, E. S., Alving, C. R., and Grenan, M. M., 1976, Light-induced leakage of spin label marker from liposomes in the presence of phototoxic phenothiazines, Photochem. Photobiol. 24:41–48.Google Scholar
  39. Cozzani, I., Jori, G., Reddi, E., Fortunato, A., Granati, B., Felice, M., Tomio, L., and Zorat, P., 1981, Distribution of endogenous and injected porphyrins at the subcelluar level in rat hepatocytes and ascites hepatoma, Chem. Biol. Interact. 37:67–75.Google Scholar
  40. de Goeij, A. F. P. M., ver Vergaert, P. H. J. T., and van Steveninck, J., 1975, Photodynamic effects of protoporphyrin on the architecture of erythrocyte membranes in protoporphyria and in normal red blood cells, Clin. Chim. Acta 62:287–292.Google Scholar
  41. de Goeij, A. F. P. M., van Straalen, R. J. C., and van Steveninck, J., 1976, Photodynamic modification of proteins in human red blood cell membranes, induced by protoporphyria, Clin. Chim. Acta 71:485–494.Google Scholar
  42. de Mol, N. J., 1980, Involvement of molecular singlet oxygen in the photosensitizing action of furocoumarins, Thesis, State University of Leiden, Leiden.Google Scholar
  43. de Mol, N. J., and Beijersbergen van Henegouwen, G. M. J., 1979, Formation of singlet molecular oxygen by 8-methoxypsoralen, Photochem. Photobiol. 30:331–336.Google Scholar
  44. de Mol, N. J., and Beijersbergen van Henegouwen, G. M. J., 1981, Relation between some photobiological properties of furocoumarins and their extent of singlet oxygen production, Photochem. Photobiol. 33:815–820.Google Scholar
  45. de Mol, N. J., Beijersbergen van Henegouwen, G. M. J., and van Belle, B., 1981, Singlet oxygen formation by sensitization of furocoumarins complexed with, or bound covalently to DNA, Photochem. Photobiol. 34:661–666.Google Scholar
  46. Deziel, M. R., and Girotti, A. W., 1980, Bilirubin-photosensitized lysis of resealed erythrocyte membranes, Photochem. Photobiol. 31:593–596.Google Scholar
  47. Deziel, M. R., and Girotti, A. W., 1981, Photodynamic lysis of resealed erythrocyte ghosts: Sizing of membrane fissures, 9th Am. Soc. Photobiol. (Abstract), p. 146.Google Scholar
  48. Dougherty, T. J., Kaufman, J. E., Golefarb, A., Weishaupt, K. R., Boyle, D., and Mittleman, A., 1978, Photoradiation therapy for the treatment of malignant tumors, Cancer Res. 38:2628–2635.Google Scholar
  49. Dougherty, T. J., Henderson, B. W., Bellnier, D. A., Weishaupt, K. R., Mixhalakes, C., Ziring, B., and Chang, C., 1981, Preliminary information pertaining to mechanisms in hematoporphyrin derivative phototherapy of malignant tissue, 9th Am. Soc. Photobiol. (Abstract), p. 124.Google Scholar
  50. Dubbelman, T. M. A. R., de Goeij, A. F. P. M., and van Steveninck, J., 1978, Photodynamic effects of protoporphyrin on human erythrocytes. Nature of the cross-linking of membrane proteins, Biochim. Biophys. Acta 511:141–151.Google Scholar
  51. Dubbelman, T. M. A. R., de Goeij, A. F. P. M., and van Steveninck, J., 1980a, Protopor-phyrin-induced photodynamic effects on transport processes across the membrane of human erythrocytes, Biochim. Biophys. Acta 595:133–139.Google Scholar
  52. Dubblelman, T. M. A. R., Haasnoot, C., and van Steveninck, J., 1980b, Temperature dependence of photodynamic red cell membrane damage, Biochim. Biophys, Acta 601:220–227.Google Scholar
  53. Foote, C. S., 1968, Mechanisms of photosensitized oxidation, Science, 162:963–970.Google Scholar
  54. Foote, C. S., 1976, Photosensitized oxidation and singlet oxygen: Consequences in biological systems, in: Free Radicals in Biology (W. A. Pryor, ed.), Vol. 2, pp. 85–133, Academic Press, New York.Google Scholar
  55. Freifelder, D., 1966, Acridine orange and methylene blue-sensitized induction of Escherichia coli lysogenic for phage, Virology 30:567–568.Google Scholar
  56. Fritsch, P., Gschanit, F., Honigsmam, H., and Wolff, K., 1976, Protective action of beta-carotene against lethal photosensitization of fibroblasts in vitro, Brit. J. Dermatol. 94:263–271.Google Scholar
  57. Giese, A. C., 1971, Photosensitization by natural pigments, in: Photophysiology (A. C. Giese, ed.), Vol. VI, pp. 77–129, Academic Press, New York.Google Scholar
  58. Giese, A. C., 1981, The photobiology of Blepharisma, in: Photochemical and Photobio-logical Reviews (K. C. Smith, ed.), Vol. 6, pp. 139–180, Plenum Press, New York.Google Scholar
  59. Girotti, A. W., 1975, Photodynamic action of bilirubin on erythrocyte membranes. Modification of polypeptide constituents, Biochemistry 14:3377–3383.Google Scholar
  60. Girotti, A. W., 1976a, Photodynamic action of protoporphyrin IX on human erythrocytes: Cross-linking of membrane proteins, Biochem. Biophys. Res. Commun. 72:1367–1374.Google Scholar
  61. Girotti, A. W., 1916b, Bilirubin-sensitized photoinactivation of enzymes in the isolated membrane of the human erythrocyte, Photochem. Photobiol. 24:525–532.Google Scholar
  62. Girotti, A. W., 1978, Bilirubin-photosensitized cross-linking of polypeptides in the isolated membrane of human erythrocyte, J. Biol. Chem. 253:7186–7193.Google Scholar
  63. Gomer, C. J., 1980, DNA damage and repair in CHO cells following hematoporphyrin photoradiation, Cancer Lett. 11:161–167.Google Scholar
  64. Gomer, C. J., and Smith, D. M., 1980, Photoinactivation of Chinese hamster cells by hematoporphyrin derivative and red light, Photochem. Photobiol. 32:341–348.Google Scholar
  65. Gommers, F. J., Bakker, J., and Wynberg, H., 1982, Dithiophenes as singlet oxygen sensitizers, Photochem. Photobiol. 35:615–619.Google Scholar
  66. Gorman, A. A., and Rodgers, M. A. J., 1978, Lifetime and reactivity of singlet oxygen in an aqueous micellar system: A pulsed nitrogen laser study, Chem. Phys. Lett. 55:52–54.Google Scholar
  67. Gorman, A. A., Lovering, G., and Rodgers, M. A. J., 1976, The photosensitized formation and reaction of singlet oxygen, O2 * (1Δ), in aqueous micellar systems, Photochem. Photobiol. 23:399–403.Google Scholar
  68. Grätzel, M., Kozak, J. J., and Thomas, J. K., 1975, Electron reactions and electron transfer reactions catalyzed by micellar systems, J. Chem. Phys. 62:1632–1640.Google Scholar
  69. Grossweiner, L. I., and Kępka, A. G., 1972, Photosensitization in biopolymers, Photochem. Photobiol. 16:305–314.Google Scholar
  70. Gutter, B., Speck, W. T., and Rosenkranz, H. S., 1977a, A study of the photoinduced mutagenicity of methylene blue, Mutat. Res. 44:177–181.Google Scholar
  71. Gutter, B., Speck, W. T., and Rosenkranz, H. S., 1977b, Light-induced mutagenicity of neutral red (3-amino-7-dimethyl-amino-2-methylphenazine hydrochloride), Cancer Res. 37:1112–1114.Google Scholar
  72. Gutter, B., Speck, W. T., and Rosenkranz, H. S., 1977c, The photodynamic modification of DNA by hematoporphyrin, Biochim. Biophys. Acta 457:307–314.Google Scholar
  73. Hackney, D. D., 1980, Photodynamic action of bilirubin on the inner mitochondrial membrane. Implications for the organization of the mitochondrial ATPase, Biochem. Biophys. Res. Commun. 94:875–880.Google Scholar
  74. Hariharan, P. V., Courtney, J., and Eleczko, S., 1980, Production of hydroxyl radicals in cell systems exposed to haematoporphyrin and red light, Int. J. Radiat. Biol. 37:691–694.Google Scholar
  75. Hass, B. S., and Webb, R. B., 1979, Photodynamic effects on bacteria III. Mutagenesis by acridine orange and 500-nm monochromatic light in strains of Escherichia coli that differ in repair capability, Mutat. Res. 60:1–11.Google Scholar
  76. Hasty, N., Merkel, P. B., Radlick, P., and Kearns, D. R., 1972, Role of azide in singlet oxygen reactions: Reaction of azide with singlet oxygen, Tetrahedron Lett. 1:49–52.Google Scholar
  77. Hèléne, C., Charlier, M., Montenay-Garestier, Th., and Laustriat, G. (eds.), 1982, Trends in Photobiology, Plenum Press, New York.Google Scholar
  78. Hoffmann, M. E., and Meneghini, R., 1979, DNA strand breaks in mammalian cells exposed to light in the presence of riboflavin and tryptophan, Photochem. Photobiol. 29:299–303.Google Scholar
  79. Hoober, J. K., 1977, Photodynamic induction of a bacterial cell surface, J. Bacteriol. 131:650–656.Google Scholar
  80. Hoober, J. K., 1978, Kinetics of accumulation of a photodynamically induced cell-surface polypeptide in a species of Arthrobacter, J. Bacteriol. 136:359–368.Google Scholar
  81. Hoober, J. K., and Franzi, J., 1980, Analysis of the mechanism of photodynamic induction of synthesis of a polypeptide in Arthrobacter sp., Photochem. Photobiol. 32:643–652.Google Scholar
  82. Hsu, J., Goldstein, B. D., and Harber, L. C., 1971, Photoreactions associated with in vitro hemolysis in erthyropoietic protoporphyria, Photochem. Photobiol. 13:67–77.Google Scholar
  83. Imray, F. P., and MacPhee, D. G., 1975, Induction of base-pair substitution and frameshift mutations in wild-type and repair-deficient strains of Salmonella typhimurium by the photodynamic action of methylene blue, Mutat. Res. 27:299–306.Google Scholar
  84. Ito, A., and Ito, T., 1982, Enhancing effect of ascorbate on toluidine blue-photosensitization of yeast cells, Photochem. Photobiol. 35:501–505.Google Scholar
  85. Ito, T., 1973a, Diffusion of acridine molecules to a genetic site in living cells, Biochim. Biophys. Acta 329:140–146.Google Scholar
  86. Ito, T., 1973b, Some difference between 470 nm and 510 nm in the acridine orange-sensitized photodynamic actions on yeast cells, Mutat. Res. 20:201–206.Google Scholar
  87. Ito, T., 1974, Uptake and localization of acridine orange in yeast cells, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 24:37–44. Google Scholar
  88. Ito, T., 1977, Toludine blue: The mode of photodynamic action in yeast cells, Photochem. Photobiol. 25:47–53.Google Scholar
  89. Ito, T., 1978, Cellular and subcellular mechanisms of photodynamic action: The 1O2 hypothesis as a driving force in recent research, Photochem. Photobiol. 28:493–508.Google Scholar
  90. Ito, T., 1980, The dependence of photosensitizing efficacy of acridine orange and toluidine blue on the degree of sensitizer-cell interaction, Photochem. Photobiol. 31:565–570.Google Scholar
  91. Ito, T., 1981a, Does membrane attacking photodynamic action reflect the so-called phase transition? Photochem. Photobiol. 33:117–120.Google Scholar
  92. Ito, T., 1981b, Photodynamic action of hematoporphyrin on yeast cells—A kinetic approach, Photochem. Photobiol. 34:521–524.Google Scholar
  93. Ito, T., and Kobayashi, K., 1974, In vivo evidence for the participation of singlet excited oxygen molecules in the photodynamic inactivation, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 24:33–36.Google Scholar
  94. Ito, T., and Kobayashi, K., 1975, An acridine probe into the physiological state of the cell, Biochim. Biophys. Acta 378:125–132.Google Scholar
  95. Ito, T., and Kobayashi, K., 1977a, In vivo evidence for the photodynamic membrane damage as a determining step of the inactivation of yeast cells sensitized by toluidine blue, Photochem. Photobiol. 25:399–401.Google Scholar
  96. Ito, T., and Kobayashi, K., 1977b, A survey of m vivo photodynamic activity of xanthenes, thiazines, and acridines in yeast cells, Photochem. Photobiol. 26:581–587.Google Scholar
  97. Ito, T., Yamasaki, T., and Matsudaira, Y., 1963, Induction of mutation by acridine orange plus light, Kagaku (Iwanami) (in Japanese) 33:383.Google Scholar
  98. Ito, T., Yamasaki, T., and Ishizaka, S., 1967, Photoinactivation of acridine-sensitized yeast cells, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 17:35–42.Google Scholar
  99. Jacob, H.-E., 1974, Photo-oxidation sensitized by methylene blue, thiopyronine, and py-ronine—IV. The behaviour of thiopyronine in suspensions of bacteria, Photochem. Photobiol. 19:133–137.Google Scholar
  100. Jacob, H.-E., 1975, DNA repair after photodynamic treatment of Proteus mirabilis, Photochem. Photobiol. 21:445–447.Google Scholar
  101. Jacob, H.-E., and Hamann, M., 1975, Photodynamic alteration of the cell envelope of Proteus mirabilis and their repair, Photochem. Photobiol. 22:237–241.Google Scholar
  102. Jori, G., and Spikes, J. D., 1981, Photosensitized oxidations in complex biological structures, in: Oxygen and Oxy-radicals in Chemistry and Biology (M. A. J. Rodgers and E. L. Powers, eds.), pp. 441–459, Academic Press, New York.Google Scholar
  103. Jori, G., Reddi, E., Rossi, E., Cozzani, I., Tomio, L., Zorat, P. L., Pizzi, G. B., and Calzavara, F., 1980, Porphyrin-sensitized photoreactions and their use in cancer phototherapy, in: Medicine Biologie Environement (L. D. Guglielmo, G. Pistolesi, and L. Santamaria, eds.), Vol. 8, pp. 139–154, Universita di Pavia.Google Scholar
  104. Jung, E. G. (ed.), 1976, Photochemotherapy, Schattauer, Stuttgart.Google Scholar
  105. Kautsky, H., 1937, Die Wechselwirkung zwischen Sensibilisatoren und Sauerstoff im Licht, Biochemische. Zeitschrift 291:271–284.Google Scholar
  106. Kautsky, H., 1939, Quenching of luminescence by oxygen, Trans. Farad. Soc. 35:216–219.Google Scholar
  107. Kearns, D. R., 1971, Physical and chemical properties of singlet molecular oxygen, Chem. Rev. 71:395–427.Google Scholar
  108. Kearns, D. R., and Khan, A. U., 1969, Sensitized photooxygenation reactions and the role of singlet oxygen, Photochem. Photobiol. 10:193–210.Google Scholar
  109. Kelly, J. F., Snell, M. E., and Berenbaum, M., 1975, Photodynamic destruction of human bladder carcinoma. Brit. J. Cancer 31:237–244.Google Scholar
  110. Kenter, D., and Laskowski, W., 1978, Induction of mutation by photodynamic action of thiopyronine in Saccharomyces cerevisiae, Radiat. Environ. Biophys. 15:379–385.Google Scholar
  111. Kessel, D., 1977, Effects of photoactivated porphyrins at the cell surface of leukemia L1210 cells, Biochemistry 16:3443–3449.Google Scholar
  112. Kessel, D., 1981, Transport and binding of hematoporphyrin derivatives and related porphyrins by murine leukemia L1210 cells, Cancer Res. 41:1318–1323.Google Scholar
  113. Kessel, D., and Kohn, K. I., 1980, Transport and binding of mesoporphyrin IX by leukemia L1210 cells, Cancer Res. 40:303–307.Google Scholar
  114. Kittler, L., and Löber, G., 1977, Photochemistry of nucleic acids, in: Photochemical and Photobiological Reviews (K. C. Smith, ed.), Vol. 2, pp. 39–131, Plenum Press, New York.Google Scholar
  115. Kittler, L., Löber, G., Gollmick, F. A., and Berg, H., 1980, Redox processes during photodynamic damage of DNA III. Redox mechanism of photosensitization and radical reaction, Bioelectrochem. Bioenerg. 7:503–511.Google Scholar
  116. Kobayashi, K., 1978, Effect of sodium azide on photodynamic induction of genetic changes in yeast, Photochem. Photobiol. 28:535–538.Google Scholar
  117. Kobayashi, K., and Ito, T., 1976, Further in vivo studies on the participation of singlet oxygen in the photodynamic inactivation and induction of genetic changes in Saccharomyces cerevisiae, Photochem. Photobiol. 23:21–28.Google Scholar
  118. Kobayashi, K., and Ito, T., 1977, Wavelength dependence of singlet oxygen mechanism in acridine orange-sensitized photodynamic action in yeast cells: Experiments with 470 nm, Photochem. Photobiol. 25:385–388.Google Scholar
  119. Kohn, K., and Kessel, D., 1979, On the mode of cytotoxic action of photoactivated porphyrins, Biochem. Pharmacol. 28:2465–2470.Google Scholar
  120. Kondo, M., and Kasai, M., 1974, Photodynamic inactivation of sarcoplasmic reticulum vesicle membranes by xanthene dyes, Photochem. Photobiol. 19:35–41.Google Scholar
  121. Konrad, K., Hönigsmann, H., Gschnait, F., and Wolff, K., 1975, Mouse model for protoporphyria, II. Cellular and subcellular events in the photosensitivity flare of the skin, J. Invest. Dermatol. 65:300–310.Google Scholar
  122. Kraljic, I., Barboy, N., and Leicknam, J. -P., 1979, Photosensitized formation of singlet oxygen by chlorophyll a in neutral aqueous micellar solutions with Triton X-100, Photochem. Photobiol. 30:631–633.Google Scholar
  123. Kramer, H. E. A., and Maute, A., 1972, Sensitized photooxygenation according to Type I mechanism (radical mechanism) — part I. Flash photolysis experiments, Photochem. Photobiol. 15:7–23.Google Scholar
  124. Krinsky, N. I., 1977, Singlet oxygen in biological systems, Trends Biochem. Sci. 2:35–38.Google Scholar
  125. Krinsky, N. I., 1979, Biological roles of singlet oxygen, in: Singlet Oxygen (H. H. Wasserman and R. W. Murray, eds.), pp. 597–641, Academic Press, New York.Google Scholar
  126. Kulig, M. J., and Smith, L. L., 1973, Sterol metabolism XXV. Cholesterol oxidation by singlet molecular oxygen, J. Org. Chem. 38:3639–3642.Google Scholar
  127. Kuwano, N., Hayashi, Y., Hayashi, H., and Miura, K., 1968, Photochemical modification of transfer RNA and its effect on amino acyl RNA synthesis, J. Mol. Biol. 32:659–671.Google Scholar
  128. Lamola, A. A., 1977, Photodegradation of biomembranes, in: Research in Photobiology (A. Castellani, ed.), pp. 53–63, Plenum Press, New York.Google Scholar
  129. Lamola, A. A., and Doleiden, F. H., 1980, Cross-linking of membrane proteins and protoporphyrin-sensitized photohemolysis, Photochem. Photobiol. 31:597–601.Google Scholar
  130. Lamola, A. A., Yamane, T., and Trozzolo, A. M., 1973, Cholesterol hydroperoxide formation in red cell membranes and photohemolysis in erythropoietic protoporphyria, Science 179:1131–1133.Google Scholar
  131. Lerman, L. S., 1961, Structural considerations in the interaction of DNA, J. Mol. Biol. 3:18–30.Google Scholar
  132. Lerman, L. S., 1963, The structure of the DNA-acridine complex, Proc. Natl. Acad. Sci. USA 49:94–102.Google Scholar
  133. Li, Jui-Lien H., and Rapp, F., 1976, Oncogenic transformation of mammalian cells in vitro by proflavine-photoinactivated herpes simplex virus Type 2, Cancer Lett. 1:319–326.Google Scholar
  134. Lindig, B. A., and Rodgers, M. A. J., 1979, Laser photolysis studies of singlet molecular oxygen in aqueous micellar dispersion, J. Phys. Chem. 83:1683–1688.Google Scholar
  135. Lindig, B. A., and Rodgers, M. A. J., 1980, Molecular excited states in micellar systems, Photochem. Photobiol. 31:617–622.Google Scholar
  136. Lindig, B. A., and Rodgers, M. A. J., 1981, Rate parameters for the quenching of singlet oxygen by water-soluble and lipid-soluble substrates in aqueous and micellar systems, Photochem. Photobiol. 33:627–634.Google Scholar
  137. Löber, G., and Kittler, L., 1977, Selected topics in photochemistry of nucleic acids. Recent results and perspectives, Photochem. Photobiol. 25:215–233.Google Scholar
  138. Lochmann, E.-R., 1967, Über photodynamische Wirkung von Farbstoffen VII. Hemmung der RNS-Synthese bei Saccharomyceszellen verschiedenen Ploidiegrades durch Farbstoffe in Gegenwart und in Abwesenheit von sichtbarem Licht, Z. Naturforsch. 22b: 196–200.Google Scholar
  139. Lochmann, E.-R., and Micheler, A., 1973, in: Physico-Chemical Properties of Nucleic Acids (J. Duchesne, ed.), Vol. 1, pp. 223–267, Academic Press, New York.Google Scholar
  140. Lochmann, E.-R., and Micheler, A., 1979, Molecular and biochemical aspects of photo-dynamic action, Photochem. Photobiol. 29:1199–1204.Google Scholar
  141. Lochmann, E.-R., and Pietsch, I., 1967, Hemmung der Proteinsynthese bei Saccharomyceszellen durch Farbstoffe in Gegenwart und in Abwesenheit von sichtbarem Licht, Stud. Biophys. 2:431–434.Google Scholar
  142. Lochmann, E.-R., Stein, W., and Haefner, K., 1964, Die Wirking von Thiopy ronin auf Ploidiegrades, auf Nukleinsäuren und Nucleinsäure-Komponenten in Gegenwart und in Abwesenkeit von sichtbarem Licht, Z. Naturforsch. 19b:838–844.Google Scholar
  143. Lochmann, E.-R., Hermann, C., Pietsch, I., und Micheler, A., 1976, Verteilung von 3H-Thiopyronin in Hefezellen (Saccharomyces cerevisiae), Z. Naturforsch. 31c:481–483.Google Scholar
  144. Lochmann, E.-R., Käufer, N., Schütze, S., and Kreutzfeldt, C., 1981a, Thiopyronine-sensitized photodynamic effect on RNA synthesis in Saccharomyces cells in vivo, Int. J. Radiat. Biol. 40:1–9.Google Scholar
  145. Lochmann, E.-R., Pietsch, I., and Schütze, S., 1981b, Thiopyronine-sensitized photodynamic effect on ribosome synthesis and ribosome content in Saccharomyces cells, Radiat. Environ. Biophys. 19:181–186.Google Scholar
  146. Lytle, C. D., and Hester, L. D., 1976, Photodynamic treatments of herpes simplex virus infection in vitro, Photochem. Photobiol. 24:443–448.Google Scholar
  147. Macmillan, J. D., Maxwell, W. A., and Chichester, C. O., 1966, Lethal photosensitization of microorganisms with light from a continuous-wave gas laser, Photochem. Photobiol. 5:555–565.Google Scholar
  148. Malik, Z., and Djaldetti, M., 1980, Destruction of erythroleukemia, myelocytic leukemia and burkitt lymphoma cells by photoactivated protoporphyrin, Int. J. Cancer 26:495–500.Google Scholar
  149. Marquardt, H., und von Laer, U., 1966, Nicht-Mutagenität von Thiopyronin in einem Vorwärts—und Rückwärtsmutation system der Hefe, Naturwissenschaften 53:Heft 7, 185.Google Scholar
  150. Mathews, M. M., 1963, Comparative study of lethal photosensitization of Sarcina lutea by 8-methoxypsoralen and by toluidine blue, J. Bacteriol. 85:322–327.Google Scholar
  151. Mathews-Roth, M. M., 1967, Cartenoid pigments and photokilling by acridine orange, J. Bacteriol. 93:506–507.Google Scholar
  152. Mathews-Roth, M. M., 1977, Photosensitization in Sarcina lutea: Different mechanisms of exogenous and endogenous photosensitizers, Photochem. Photobiol. 25:599–600.Google Scholar
  153. Matsumoto, S., 1974, Photodynamic inactivation of Escherichia coli cells after starvation for required amino acid or chloramphenicol treatment, Jpn. J. Genet. 49:275–279.Google Scholar
  154. Mayor, H. D., 1962, Biophysical studies on viruses using the fluorochrome acridine orange, Prog. Med. Virol. 4:70–86.Google Scholar
  155. Maxwell, W. A., Macmillan, J. D., and Chichester, C. O., 1966, Function of carotenoids in protection of Rhodotorula glutinis against irradiation from a gas laser, Photochem. Photobiol. 5:567–577.Google Scholar
  156. Melnick, J. L., and Wallis, C., 1975, Photodynamic inactivation of Herpesvirus, Viral Perspect. 9:297–314.Google Scholar
  157. Melnick, J. L., and Wallis, C., 1977, Photodynamic inactivation of herpes simplex virus: A status report, Ann. N. Y. Acad. Sci. 284:171–180.Google Scholar
  158. Merkel, P. B., Nilsson, R., and Kearns, D. P., 1972, Deuterium effects on singlet oxygen lifetimes in solution. A new test of singlet oxygen reaction, J. Am. Chem. Soc. 94:1030–1031.Google Scholar
  159. Micheler, A., and Lochmann, E.-R., 1971, Die Aufnahme von Thiopyronin in Saccharo-myceszellen XI. Mittelung über photodynamische Wirkung von Farbstoffen, Stud. Biophys. 26:207–214.Google Scholar
  160. Micheler, A., and Nishiyama-Watanabe, S., 1977, Thiopyronine-sensitized photodynamic inactivation of RNA synthesis in vitro, Int. J. Radiat. Biol. 31:35–43.Google Scholar
  161. Miyoshi, N., and Tomita, G., 1979, Effects of indole and tryptophan on furan oxidation by singlet oxygen in micellar solutions, Photochem. Photobiol. 29:527–530.Google Scholar
  162. Moan, J., and Boye, E., 1981, Photodynamic effect on DNA and cell survival of human cells sensitized by hematoporphyrin, Photobiochem. Photobiophys. 2:301–307.Google Scholar
  163. Moan, J., and Christensen, T., 1981, Cellular uptake and photodynamic effect of hematoporphyrin, Photobiochem. Photobiophys. 2:291–299.Google Scholar
  164. Moan, J., and Sommer, S., 1981, Fluorescence and absorption properties of the components of hematoporphyrin derivatives, Photobiochem. Photobiophys. 3:93–103.Google Scholar
  165. Moan, J., and Stenström, A. G., 1981, Effect of phosphate and chloride on the photodynamic inactivation of yeast cells, Photochem. Photobiol. 33:761–763.Google Scholar
  166. Moan, L., Pettersen, E. O., and Christensen, T., 1979, The mechanism of photodynamic inactivation of human cells in vitro in the presence of hematoporphyrin, Brit. J. Cancer 39:398–407.Google Scholar
  167. Moan, J., Smedshammer, L., and Christensen, T., 1980, Photodynamic effects of human cells exposed to light in the presence of hematoporphyrin. pH effects, Cancer Lett. 9:327–332.Google Scholar
  168. Moan, J., Steen, H. B., Feren, K., and Christensen, T., 1981, Uptake of hematoporphyrin derivatives and sensitized photo-inactivation of C3H cells with different oncogenic potential, Cancer Lett. 14:291–296.Google Scholar
  169. Mukai, F. H., and Goldstein, B. D., 1976, Mutagenicity of malondialdehyde, a decomposition product of peroxidized polyunsaturated fatty acids, Science 191:868–869.Google Scholar
  170. Muller-Runkel, R., Blais, J., and Grossweiner, L. I., 1981, Photodynamic damage to egg lecithin liposome, Photochem. Photobiol. 33:683–687.Google Scholar
  171. Musajo, L., and Rodighiero, G., 1970, Studies on the photo-C4-cyclo-addition reactions between skin-photosensitizing furocoumarins and nucleic acids, Photochem. Photobiol. 11:27–35.Google Scholar
  172. Musajo, L., and Rodighiero, G., 1972, Mode of photosensitizing action of furocoumarins, in: Photophysiology (A. C. Giese, ed.), Vol. 7, pp. 115–147, Academic Press, New York.Google Scholar
  173. Nakai, S., and Saeki, T., 1964, Induction of mutation by photodynamic action in Escherichia coli, Genet. Res. 5:158–161.Google Scholar
  174. Nishida, K., and Wakayama, Y., Takagi, M., and Yano, K., 1980, Inactivation of E. coli cells by 1O2. (3) Effects on membrane-DNA complex,J. Radiat. Res. (Abstract), (Japan), 21:16.Google Scholar
  175. Nishiyama-Watanabe, S., 1976, Photodynamic action of thiopyronine on the respiration and fermentation in yeast, Int. J. Radiat. Biol. 30:501–509.Google Scholar
  176. Nishiyama-Watanabe, S., and Schulz-Härder, B., 1977, Photodynamic action of thiopyronine on polyribosomes and cell-free protein synthesis in yeast, Int. J. Radiat. Biol. 31:113–119.Google Scholar
  177. Oster, G., and Watherspoon, N., 1954, Photobleaching and photorecovery of dyes, J. Chem. Phys. 22:157–158.Google Scholar
  178. Oxman, M. N., 1977, The clinical evaluation of photodynamic inactivation for the therapy of recurrent herpes simplex virus infections, Photochem. Photobiol. 25:343–344.Google Scholar
  179. Parrish, J. A., and Regan J. D. (eds.), 1982, The Science of Photomedicine, Plenum Press, New York.Google Scholar
  180. Patterson, L. K., and Grätzel, M., 1975, Behavior of hydrated electrons in micellar solution. Studies with cetyltrimethylammonium bromide-cetylpyridinium chroride mixed micelles, J. Phys. Chem. 79:956–960.Google Scholar
  181. Peacocke, A. R., and Skerrett, J. N. H., 1956, The interaction of aminoacridines with nucleic acids, Trans. Farad. Soc. 52:261–279.Google Scholar
  182. Perdrau, J. P., and Todd, C., 1933, The photodynamic action of methylene blue on bacteriophage, Proc. Roy. Soc. Lond. B112:227–287.Google Scholar
  183. Peter, G., and Rodgers, M. A. J., 1980, On the feasibility of electron transfer to singlet oxygen from mitochondrial components, Biochem. Biophys. Res. Commun. 96:770–776.Google Scholar
  184. Piette, J., Calberg-Bacq, C.M., and Van de Vorst, A., 1977, Proflavine mediated photo-inactivation of bacteriophage øX174 and its isolated DNA: Effects of agents modifying various photochemical pathways, Photochem. Photobiol. 26:377–382.Google Scholar
  185. Piette, J., Calberg-Bacq, CM., and Van de Vorst, A., 1978a, Photodynamic activity of dyes with different DNA binding properties II. T4 phage inactivation, Int. J. Radiat. Biol. 34:223–232.Google Scholar
  186. Piette, J., Calberg-Bacq, CM., and Van de Vorst, A., 1978b, Photodynamic effect of proflavine on øX174 bacteriophage, its DNA replicative form and its isolated single-stranded DNA: Inactivation, mutagenesis and repair, Mol. Gen. Genet. 167:95–103.Google Scholar
  187. Piette, J., Calberg-Bacq, CM., and Van de Vorst, A., 1978c, Proflavine photosensitization of double and single stranded DNA: EPR study of the effect of various sulpha-containing substances, Photochem. Photobiol. 27:457–464.Google Scholar
  188. Piette, J., Calberg-Bacq, C.M., and Van de Vorst, A., 1979, Production of breaks in single-and double-stranded forms of bacteriphage øX174 DNA by proflavine and light treatment, Photochem. Photobiol. 30:369–378.Google Scholar
  189. Piette, J., Calberg-Bacq, C. M., and Van de Vorst, A., 1981, Alteration of guanine residues during proflavine mediated photosensitization of DNA, Photochem. Photobiol. 33:325–333.Google Scholar
  190. Pileni, M. P., Santus, R., and Land, E. J., 1978, On the photosensitizing properties of N-formylkynurenine and related compounds, Photochem. Photobiol. 28:525–529.Google Scholar
  191. Pooler, J. P., and Valenzeno, D. P., 1978, Kinetic factors governing sensitized photooxi-dation of excitable cell membranes, Photochem. Photobiol. 28:219–226.Google Scholar
  192. Pooler, J. P., and Valenzeno, D. P., 1979a, Physicochemical determinants of the sensitizing effectiveness for photooxidation of nerve membranes by fluorescein derivatives, Photochem. Photobiol. 30:491–498.Google Scholar
  193. Pooler, J. P., and Valenzeno, D. P., 1979b, The role of singlet oxygen in photooxidation of excitable cell membranes, Photochem. Photobiol. 30:581–584.Google Scholar
  194. Pooler, J. P., and Valenzeno, D. P., 1981, Dye-sensitized photodynamic inactivativation of cells, Med. Phys. 8(5):614–628.Google Scholar
  195. Poppe, W., and Grossweiner, L. I., 1975, Photodynamic sensitization by 8-methoxypsoralen via the singlet oxygen mechanism, Photochem. Photobiol. 22:217–219.Google Scholar
  196. Pottier, R., Bonneau, R., and Joussot-Dubien, J., 1975, pH dependence of singlet oxygen production in aqueous solutions using toluidine blue as a photosensitizer, Photochem. Photobiol. 22:59–61.Google Scholar
  197. Prebble, J., and Huda, A. S., 1973, Sensitivity of the electron transport chain of pigmented and non-pigmented Sarcina membranes to photodynamic action, Photochem. Photobiol. 17:255–264.Google Scholar
  198. Pritchard, N. J., Blake, A., and Peacocke, A. R., 1966, Modified intercalation model for the interaction of amino acridines and DNA, Nature 212:1360–1361.Google Scholar
  199. Rapp, F., and Kemeny, B. A., 1977, Oncogenic potential of herpes simplex virus in mammalian cells following photodynamic inactivation, Photochem. Photobiol. 25:335–337.Google Scholar
  200. Rapp, F., Li, J. H., and Jerkofsky, M., 1973, Transformation of mammalian cells by DNA-containing viruses following photodynamic inactivation, Virology 55:339–346.Google Scholar
  201. Reddi, E., Ricchelli, F., and Jori, G., 1981, Interaction of human serum albumin with hematoporphyrin and its Zn2+ — and Fe3 — derivatives, Int. J. Pept. Protein Res. 18:402–408.Google Scholar
  202. Regan, J. D., and Setlow, R. B., 1977, The effect of proflavine plus visible light on the DNA of human cells, Photochem. Photobiol. 25:345–346.Google Scholar
  203. Rigler, R., and Killander, D., 1969, Activation of deoxyribonucleoprotein in human leucocytes stimulated by phytohemaglutinin Exp. Cell Res. 54:174–180.Google Scholar
  204. Roberts, J. E., 1981a, The effects of photooxidation by proflavine on HeLa cells-I. The molecular mechanisms, Photochem. Photobiol. 33:55–59.Google Scholar
  205. Roberts, J. E., 1981b, The effects of photooxidation by proflavine on HeLa cells-II. Damage to DNA, Photochem. Photobiol. 33:61–64.Google Scholar
  206. Rodgers, M. A. J., and Powers, E. L. (eds.), 1981, Oxygen and Oxy-radicals in Chemistry and Biology, Academic Press, New York.Google Scholar
  207. Rossi, E., Van de Vorst, A., and Jon, G., 1981, Competition between the singlet oxygen and electron transfer mechanisms in the porphyrin-sensitized photooxidation of L-tryptophan and tryptamine in aqueous micellar dispersions, Photochem. Photobiol. 34:447–454.Google Scholar
  208. Roth, R., Papierniak, K. J., and Anderson, J. M., 1978, Mutations in Saccharomyces cerevisiae affecting sensitivity to photodynamic inactivation, Photochem. Photobiol. 27:795–798.Google Scholar
  209. Sandberg, S., and Romslo, I., 1980, Porphyrin-sensitized photodynamic damage of isolated rat liver mitochondria, Biochim. Biophys. Acta 593:187–195.Google Scholar
  210. Sandberg, S., and Romslo, I., 1981, Porphyrin-induced photodamage at the cellular and subcellular level as related to the solubility of porphyrin, Clin. Chim. Acta 109:193–201.Google Scholar
  211. Sandberg, S., Glette, J., Hopen, G., Solberg, C. O., and Romslo, I., 1981, Porphyrin-induced photodamage to isolated human neutrophils, Photochem. Photobiol. 34:471–475.Google Scholar
  212. Santamaria, L., Biandri, A., Arnaboldi, A., and Daffara, P., 1980, Photocarcinogenesis by methoxypsoralen, neutral red and proflavine. Possible implications in photochemotherapy, in: Medicine Biologie Environnement (L. D. Guglielmo, G. Pistolesi, and L. Santamaria, eds.), Vol. 8, pp. 167–181, Universita di Pavia.Google Scholar
  213. Schothorst, A. A., de Haas, C. A. C., and Suurmond, D., 1980, Photochemical damage to skin fibroblasts caused by protoporphyrin and violet light, Arch. Dermatol. Res. 268:31–42.Google Scholar
  214. Sconfienza, C., Van de Vorst, A., and Jori, G., 1980, Type 1 and Type 2 mechanisms in the photooxidation of L-tryptophan and tryptamine sensitized by hematoporphyrin in the presence and absence of sodium dodecyl sulphate micelles, Photochem. Photobiol. 31:351–357.Google Scholar
  215. Sery, T. W., 1979, Photodynamic killing of retinoblastoma cells with hematoporphyrin and light, Cancer Res. 39:96–100.Google Scholar
  216. Shimizu-Takahama, M., Egashira, T., and Takahama, U., 1981, Inhibition of respiration and loss of membrane integrity by singlet oxygen generated by a photosensitized reaction in Neurospora crassa conidia, Photochem. Phoiobiol. 33:689–694.Google Scholar
  217. Simon, M. I., and van Vunakis, H., 1962, The photodynamic reaction of methylene blue with deoxyribonucleic acid, J. Mol. Biol. 4:488–499.Google Scholar
  218. Singh, A., and Petkau, A., 1978, Singlet oxygen and related species in chemistry and biology, Proceedings International Conference, Special Issue of Photochem. Photobiol. 28:429–933.Google Scholar
  219. Singh, H., and Vadasz, J. A., 1978, Singlet oxygen: A major reactive species in the furo-coumarin photosensitized inactivation of E. coli ribosomes, Photochem. Photobiol. 28:539–545.Google Scholar
  220. Smets, L. A., 1973, Activation of nuclear chromatin and the release from contact-inhibition of 3T3 cells, Exp. Cell Res. 79:239–243.Google Scholar
  221. Smith, K. C., 1981, Photobiology and photomedicine: The future is bright, J. Invest. Dermatol. 77:2–7.Google Scholar
  222. Smith, L. L., and Stroud, J. P., 1978, Sterol metabolism XLII. On the interaction of singlet molecular oxygen by sterols, Photochem. Photobiol. 28:479–485.Google Scholar
  223. Snipes, W., Keller, G., Woog, J., Vickroy, T., Deering, R., and Keith, A., 1979, Inactivation of lipid-containing viruses by hydrophobic photosensitizers and near-ultraviolet radiation, Photochem. Photobiol. 29:785–790.Google Scholar
  224. Speck, W. T., Chen, C. C., and Rosenkranz, H. S., 1975, In vitro studies of effects of light and riboflavin on DNA and HeLa cells, Pediatr. Res. 9:150–153.Google Scholar
  225. Speck, W. T., Santella, R. M., Brem, S., and Rosenkranz, H. S., 1979, Alteration of human cellular DNA by neutral red in the presence of visible light, Mutat. Res. 66:95–98.Google Scholar
  226. Speck, W. T., Behrman, A. J., Rosenkranz, P. G., Gordon, D., and Rosenkranz, H. S., 1980, Abnormal embryonic development of the American sea urchin following illumination of gametes with visible light from a phototherapy unit, Photochem. Photobiol. 31:513–517.Google Scholar
  227. Spikes, J. D., 1975, Porphyrins and related compounds as photodynamic sensitizers, Ann. N. Y. Acad. Sci. 244:496–508.Google Scholar
  228. Spikes, J. D., 1981, Photodynamic behavior of porphyrins in liposomal systems, 9th Am. Soc. Photobiol. (Abstract), p. 144.Google Scholar
  229. Spikes, J. D., 1982, Photodynamic reactions in photomedicine, in The Science of Photo-medicine (J. D. Regan and J. A. Parrish, eds.), pp. 113–144, Plenum Press, New York.Google Scholar
  230. Spikes, J. D., and Livingston, R., 1969, The molecular biology of photodynamic action in: Advances in Radiation Biology (L. G. Augenstein, R. Mason, and M. Zelle, eds.), Vol. 3, pp. 21–121, Academic Press, New York.Google Scholar
  231. Spikes, J. D., and Straight, R., 1981, The sensitized photooxidation of biomolecules, an overview, in: Oxygen and Oxy-Radicals in Chemistry and Biology (M. A. J. Rodgers and E. L. Powers, eds.), pp. 421–424, Academic Press, New York.Google Scholar
  232. Stenström, A. G. K., Brunborg, G., and Eklund, T., 1980, Photodynamic inactivation of yeast cells sensitized by hematoporphyrin, Photochem. Photobiol. 32:349–352.Google Scholar
  233. Suwa, K., Kimura, T., and Schaap, A. P., 1977, Reactivity of singlet molecular oxygen with cholesterol in a phospholipid membrane matrix. A model for oxidative damage of membranes, Biochem. Biophys. Res. Commun. 75:785–792.Google Scholar
  234. Suwa, K., Kimura, T., and Schaap, A. P., 1978, Reaction of singlet oxygen with cholesterol in liposomal membranes. Effect of membrane fluidity on the photooxidation of cholesterol, Photochem. Photobiol. 28:469–473.Google Scholar
  235. Tijssen, J. P. F., Beekes, H. W., and Van Steveninck, J., 1981, Localization of polyphosphate at the outside of the yeast cell plasma membrane, Biochim. Biophys. Acta. 649:529–532.Google Scholar
  236. Towers, G. H. N., Wat, C. K., Graham, E. A., Chan, G. F. Q., Bandoni, R. J., Mitchel, J. C., and Lam, J., 1977, Ultraviolet-mediated antibiotic activity of species of com-positae caused by polyacetylenic compounds, Lloydia 40:487–498.Google Scholar
  237. Traganos, F., Darynkiewicz, Z., Sharpless, T., and Melamed, M., 1976, Cytofluorometric studies on conformation of nucleic acids in situ, J. His toe hem. Cytochem. 24:40–48.Google Scholar
  238. Triebel, H., Bär, H., Jacob, H.-E., Sarfert, E., and Berg, H., 1978, Sedimentation analysis of DNA photooxidized in the presence of thiopyronine, Photochem. Photobiol. 28:331–337.Google Scholar
  239. Tsugita, A., Okada, Y., and Uehara, K., 1965, Photosensitized inactivation of ribonucleic acids in the presence of riboflavin, Biochim. Biophys. Acta 103:360–363.Google Scholar
  240. Turro, N. J., 1969, The triplet state, J. Chem. Educ. 46:2–6.Google Scholar
  241. Usui, Y., Tsukada, M., and Nakamura, H., 1978, Kinetic studies of photosensitized oxygenation by singlet oxygen in aqueous micellar solution, Bull. Chem. Soc. Jpn. 51:379–384.Google Scholar
  242. Utsumi, H., and Elkind, M. M., 1979, Photodynamic cytotoxicity of mammalian cells exposed to sunlight-simulating near ultraviolet light in the presence of the carcinogen 7, 12-dimethylbenz(a)anthracene, Photochem. Photobiol. 30:271–278.Google Scholar
  243. Valenzeno, D. P., and Pooler, J. P., 1982, Cell membrane photomodification: Relative effectiveness of halogenated fluoresceins for photochemolysis, Photochem. Photobiol. 35:343–350.Google Scholar
  244. Verwoerd, D. W., and Rapp, F., 1978, Biochemical transformation of mouse cells by herpes simplex virus type 2: Enhancement by means of low-level photodynamic treatment, J. Virol. 26:200–202.Google Scholar
  245. Wagner, S., Taylor, W. D., Keith, A., and Snipes, W., 1980, Effects of acridine plus near ultraviolet light on Escherichia coli membranes and DNA in vivo, Photochem. Photobiol. 32:771–779.Google Scholar
  246. Wagner, S., Feldman, A., and Snipes, W., 1982, Recovery from damage induced by acridine plus near-ultraviolet light in Escherichia coli, Photochem. Photobiol. 35:73–81.Google Scholar
  247. Wakayama, Y., Takagi, M., and Yano, K., 1980, Photosensitized inactivation of E. coli cells in toluidine blue-light system, Photochem. Photobiol. 32:601–605.Google Scholar
  248. Wallace, S. C., and Thomas, J. K., 1973, Reactions in micellar systems, Radiat. Res. 54:49–62.Google Scholar
  249. Wasserman, H., and Murray, R. W., (eds.), 1979, Singlet Oxygen. Academic Press, New York.Google Scholar
  250. Wat, C.-K., Biswas, R. K., Graham, E. A., Böhm, L., and Towers, G. H. N., 1977, Ultraviolet-mediated cytotoxic activity of phenylheptatriyne from Bidens pilosa L, J. Nat. Products 42:103–111.Google Scholar
  251. Wat, C.-K., Macrae, W. D., Yamamoto, E., Towers, G. H. N., and Lam, J., 1980, Phototoxic effects of naturally occurring polyacetylenes and a-terthienyl on human erythrocytes, Photochem. Photobiol. 32:167–172.Google Scholar
  252. Webb, R. B., 1977, Lethal and mutagenic effects of near-ultraviolet radiation, in: Photochemical and Photobiological Reviews (K. C. Smith, ed.), Vol. 2, pp. 169–261, Plenum Press, New York.Google Scholar
  253. Webb, R. B., Hass, B. S., and Kubitschek, H. E., 1979, Photodynamic effects of dyes on bacteria II. Genetic effects of broad-spectrum visible light in the presence of acridine dyes and methylene blue in chemostat cultures of Escherichia coli, Mutat. Res. 59:1–13.Google Scholar
  254. Weishaupt, K. R., Gomer, C. J., and Dougherty, T. J., 1976, Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor, Cancer Res. 36:2326–2329.Google Scholar
  255. Wilson, T., and Hastings, J. W., 1970, Chemical and biological aspects of singlet excited molecular oxygen, in: Photophysiology (A. C. Giese, ed.), Vol. 5, pp. 49–95, Academic Press, New York.Google Scholar
  256. Yonei, S., and Furui, H., 1981, Lethal and mutagenic effects of malondialdehyde, a decomposition product of peroxidized lipids, on Escherichia coli with different DNA repair capacities, Mutat. Res. 88:23–32.Google Scholar
  257. Yoshikawa, K., Kurata, H., Iwahara, S., and Kada, T., 1978, Photodynamic action of fluorescein dyes in DNA-damage and in vitro inactivation of transforming DNA in bacteria, Mutat. Res. 56:359–362.Google Scholar
  258. Youtsey, K. J., and Grossweiner, L. I., 1967, Optical excitation of the eosin-human serum albumin complex, Photochem. Photobiol. 6:721–731.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Takashi Ito
    • 1
  1. 1.Institute of Physics, College of General EducationUniversity of TokyoMeguroku, Komaba 381. Tokyo 153Japan

Personalised recommendations