The Electronic Spectroscopy of Photoreceptors (Other Than Rhodopsin)

  • Pill-Soon Song


A number of organisms ranging from prokaryotic bacteria to eukaryotic mammals directly respond to light of different wavelengths in terms of various photobiological reactions. A photobiological reaction entails the absorption of a specific wavelength of light by the functioning photoreceptor molecule within the photoreceptor organelle or apparatus. The general scheme of photoreceptor function is outlined diagramatically in Fig. 1. As can be seen from this figure, the photoreceptor molecule absorbs a specific wavelength of light, generating its electronically excited state from which primary molecular processes leading to the measureable photoresponse reaction of an organism proceeds. It is readily recognized that the electronic spectroscopy of photoreceptors plays an essential part in describing the mechanisms of photobiological processes at the molecular level. This review is intended to provide the reader with the current knowledge of the electronic excited states of various photobiological receptors, except rhodopsin and bacteriorhodopsin, which are extensively reviewed elsewhere (Birge, 1981, and references therein).


Circular Dichroism Fluorescence Quantum Yield Flavin Adenine Dinucleotide Soret Band Molecular Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, J. R., and Hudson, B., 1979, Geometric effects in the excited states of conjugated trienes, Chem. Phys. Lett. 60:380–384.Google Scholar
  2. Andrews, L. J., and Forster, L. S., 1972, Protein difference spectra. Effect of solvent and charge on tryptophan, Biochemistry 11:1875–1879.Google Scholar
  3. Barth, G., Voelter, W., Bunnenberg, E., and Djerassi, C., 1972, Magnetic circular dichroism studies. XVII. Magnetic circular dichroism spectra of proteins. A new method for the quantitative determination of tryptophan, J. Am. Chem. Soc. 95:1293–1298.Google Scholar
  4. Beardsley, K., and Cantor, C. R., 1970, Studies of transfer RNA tertiary structure by singlet-singlet energy transfer, Proc. Natl. Acad. Sci. USA 65:39–46.Google Scholar
  5. Birge, R. R., 1981, Phofophysics of light transduction in rhodopsin and bacteriorhodopsin, Annu. Rev. Biophys. Bioeng. 10:315–354.Google Scholar
  6. Birge, R. R., and Pierce, B. M., 1979, A theoretical analysis of the two-photon properties of linear polyenes and the visual chromophores, J. Chem. Phys. 70:165–178.Google Scholar
  7. Birks, J. B., Tripathi, G. N. R., and Lumb, M. D., 1978, The fluorescence of all-trans diphenyl polyenes,J. Chem. Phys. 33:185–194.Google Scholar
  8. Björn, L. O., 1979, Photoreversibly photochromic pigments in organisms: Properties and role in biological light perception, Q. Rev. Biophys. 12:1–23.Google Scholar
  9. Björn, L. O., and Björn, G. S., 1980, Photochromic pigments and photoregulation in blue-green algae, Photochem. Photobiol. 32:849–852.Google Scholar
  10. Blauer, G., and Wagniere, G., 1975, Conformations of bilirubin and biliverdin in their complexes with serum albumin, J. Am. Chem. Soc. 97:1949–1954.Google Scholar
  11. Blumberg, W. E., Eisinger, J., and Navon, G., 1968, The lifetimes of excited states of some biological molecules, Biophys. J. 8:A106.Google Scholar
  12. Boxer, S. G., and Roelofs, M. G., 1979, Chromophore organization in photosynthetic reaction centers: High resolution magnetophotoselection, Proc. Natl. Acad. Sci. USA 76:5636–5640.Google Scholar
  13. Boxer, S. G., Closs, G. L., and Katz, J. J., 1974, The effect of magnesium coordination on the 13C and 15N magnetic resonance spectra of chlorophyll a. The relative energies of nitrogen n,π* states as deduced from a complete assignment of chemical shifts, J. Am. Chem. Soc. 96:7058–7066.Google Scholar
  14. Boxer, S. G., Kuki, A., Wright, K. A., Katz, B. A., and Xuong, N. H., 1982, Oriented properties of the chlorophylls: Electronic absorption spectroscopy of orthorhombic pyrochlorophyllide α-apomyoglobin single crystals, Proc. Natl. Acad. Sci. USA (in press).Google Scholar
  15. Brahms, J., Pilet, J., Damany, H., and Chandrasekharan, V., 1968, Application of a new modulation method for linear dichroism studies of oriented biopolymers in the vacuum ultraviolet, Proc. Natl. Acad. Sci. USA 60:1130–1137.Google Scholar
  16. Brandlmeier, T., Scheer, H., and Rüdiger, W., 1981, Chromophore content and molar absorptivity of phytochrome in the Pr form, Z. Naturforsch. 36c:431–439.Google Scholar
  17. Brody, S. S., and Rabinowitch, E., 1957, Excitation lifetime of photosynthetic pigments in vitro and in vivo, Science 125:555.Google Scholar
  18. Buchwald, M., and Jencks, W. P., 1968a, Optical properties of astaxanthin solutions and aggregates, Biochemistry 7:834–843.Google Scholar
  19. Buchwald, M., and Jencks, W. P., 1968b, Properties of the crustacyanins and yellow lobster shell pigment, Biochemistry 7:844–858.Google Scholar
  20. Bush, C. A., and Scheraga, H. A., 1969, Optical activity of single-stranded polydeoxy-adenylic and polyriboadenylic acids: Dependence of adenine chromophore Cotton effects on polymer conformation, Biopolymers 7:395–409.Google Scholar
  21. Butler, W. L., and Norris, K. H., 1963, Lifetime of the long-wavelength chlorophyll fluorescence, Biochim. Biophys. Acta 66:72–71.Google Scholar
  22. Callis, P. R., 1983, Spectroscopy and luminescence of DNA, its bases and dinucleotides, Annu. Rev. Phys. Chem. 34 (in press).Google Scholar
  23. Callis, P. R., and Simpson, W. T., 1970, Polarization of electronic transitions in cytosine, J. Am. Chem. Soc. 92:3593–3599.Google Scholar
  24. Chae, Q., Song, P. -S., Johansen, J. E., and Liaaen-Jensen, S., 1977, Linear dichroic spectra of cross-conjugated carotenals and configurations of in-chain substituted carotenoids, J. Am. Chem. Soc. 99:5609–5614.Google Scholar
  25. Chapman, D., Cherry, R. J., and Morrison, A., 1967, Spectroscopic and electrical studies of all-trans β-carotene crystals, Proc. R. Soc. Lond. Ser. A 301:173–193.Google Scholar
  26. Cheesman, D. F., Zagalsky, P. F., and Cecealdi, H. J., 1966, Purification and properties of crustacyanin, Proc. R. Soc. Lond. Ser. B 164:130–151.Google Scholar
  27. Chen, R. F., 1967, Fluorescence quantum yields of tryptophan and tyrosine, Anal. Lett. 1:35–42.Google Scholar
  28. Chen, H. H., and Clark, L. B., 1969, Polarization assignments of the electronic spectrum of purine, J. Chem. Phys. 51:1862–1871.Google Scholar
  29. Chen, R. F., Vurek, G. G., and Alexander, N., 1967, Fluorescence decay times: Proteins, coenzymes, and other compounds in water, Science 156:949–951.Google Scholar
  30. Chin, C. A., 1975, Theoretical analyses of electronic excited states of chlorophylls, carotenoids, firefly luciferins and psoralens, Ph.D. dissertation, Texas Tech University, Lubbock, Texas.Google Scholar
  31. Clark, L. B., 1972, cited by Daniels, M., 1976.Google Scholar
  32. Clark, L. B., 1977, Electronic spectroscopy of crystaline 9-ethylguanine and guanine hydrochloride,J. Am. Chem. Soc. 99:3934–3938.Google Scholar
  33. Clark, L. B., and Tinoco, I., Jr., 1965, Correlations in the ultraviolet spectra of the purine and pyrimidine bases, J. Am. Chem. Soc. 87:11–15.Google Scholar
  34. Clark, R. J. H., D’Urso, N. R., and Zagalsky, P. F., 1980, Excitation profiles, absorption and resonance raman spectra of the carotenoprotein ovorubin, and a resonance raman study of some other astaxanthin proteins, J. Am. Chem. Soc. 102:6693–6698.Google Scholar
  35. Clayton, R., 1965, Molecular Physics in Photosynthesis, p. 196, Blaisdell, New York.Google Scholar
  36. Cockle, S. A., and Szabo, A. G., 1981, Time-resolved fluorescence spectra of tryptophan in monomelic glucagon, Photochem. Photobiol. 34:23–27.Google Scholar
  37. Cosens, D., and Prue, D. V. (eds.), 1983, The Biology of Photoreceptors, Cambridge University Press, Cambridge (in press).Google Scholar
  38. D’Amico, K. L., Manos, C., and Christensen, R. L., 1980, Electronic energy levels in a homologous series of unsubstituted linear polyenes, J. Am. Chem. Soc. 102:1777–1782.Google Scholar
  39. Daniels, M., 1976, Excited states of the nucleic acids: Bases, mononucleosides, and mononucleotides, in: Photochemistry and Photobiology of Nucleic Acids (S. Y. Wang, ed.), Vol. I, pp. 23–108, Academic Press, New York/San Francisco/London.Google Scholar
  40. Daniels, M., and Hauswirth, W., 1971, Fluorescence of the purine and pyrimidine Bases of the nucleic acids in neutral aqueous solution at 300°K, Science 171:675–677.Google Scholar
  41. Davis, R. C., Ditson, S. L., Fentiman, A. F., and Pearlstein, R. M., 1981, Reversible wavelength shifts of chlorophyll induced by a point charge, J. Am. Chem. Soc. 103:6823–6826.Google Scholar
  42. DeVoe, H., and Tinoco, I., Jr., 1962a, The stability of helical polynucleotides: Base contributions, J. Mol. Biol. 4:500–517.Google Scholar
  43. DeVoe, H., and Tinoco, I., Jr., 1962The hypochromism of helical polynucleotides, J. Mol. Biol. 4:518–527.Google Scholar
  44. Dmitrievsky, O. D., Ermolaev, V. L., and Terenin, A. N., 1957, Direct lifetime measurements of excited molecules of chlorophyll and analogous pigments, Dokl. Acad. Nauk SSSR 114:751–753.Google Scholar
  45. Dudley, K. H., Ehrenberg, A., Hemmerich, P., and Müller, F., 1964, Spektren und strukturen der am flavin-redox system beteiligten Partikeln, Helv. Chim. Acta 47:1354–1383.Google Scholar
  46. Eaton, W. A., and Lewis, T. P., 1970, Polarized single-crystal absorption spectrum of 1-methyluracil,J. Chem. Phys. 53:2164–2172.Google Scholar
  47. Eaton, W. A., Hofrichter, J., Makinen, M. W., Anderson, R. D., and Ludwig, M. L., 1975, Optical spectra and electronic structure of flavine mononucleotide in flavodoxin crystals, Biochemistry 14:2146–2151.Google Scholar
  48. Ebrey, T. G., and Clayton, R. K., 1969, Polarization of fluorescence from bacteriochlo-rophyll in castor oil, in chromatophores and as P870 in photosynthetic reaction centers, Photochem. Photobiol. 10:109–117.Google Scholar
  49. Eisinger, J., and Navon, G., 1969, Fluorescence quenching and isotope effect of tryptophan,J. Chem. Phys. 50:2069–2077.Google Scholar
  50. Eisinger, J., and Shulman, R. G., 1968, Excited electronic states of DNA, Science 161:1311–1319.Google Scholar
  51. Eisinger, J., Feuer, B., and Yamane, T., 1970, Luminescence and binding studies on tRNAPhe, Proc. Natl. Acad. Sci. USA 65:638–644.Google Scholar
  52. Eweg, J. K., Müller, F., Bebelaar, D., and van Voorst, J. D. W., 1980, Spectral properties of (iso)alloxazines in the vapour phase, Photochem. Photobiol. 31:435–443.Google Scholar
  53. Eweg, J. K., Müller, F., van Dam, H., Terpstra, A., and Oskam, A., 1982, Anomalous intramolecular hydrogen bond in 10-hydroxyalkyl isoalloxazines as revealed by photoelectron spectroscopy, and the implications for optical spectra, J. Phys. Chem. (in press).Google Scholar
  54. Fang, H. L. B., Thrash, R. J., and Leroi, G. E., 1978, Observation of the low-energy 1Ag state of diphenylhexatriene by two-photon excitation spectroscopy, Chem. Phys. Lett. 57:59–63.Google Scholar
  55. Fasman, G. D. (ed.), 1976, CRC Handbook of Biochemistry and Molecular Biology, 3rd Ed., Volumes I and II, CRC Press, Cleveland.Google Scholar
  56. Favre, A., 1974, Luminescence and photochemistry of 4-thiouridine in aqueous solution, Photochem. Photobiol. 19:15–19.Google Scholar
  57. Favre, A., Michelson, A.M., and Yaniv, M., 1971, Photochemistry of 4-thiouridine in Escherichia coli transfer RNA1 Val,J. Mol. Biol. 58:367–379.Google Scholar
  58. Fleming, G. R., Morris, J. M., Robbins, R. J., Woolfe, G. J., Thistlethwaite, P. J., and Robinson, G. W., 1978, Nanosecond fluorescence decay of aqueous tryptophan and two related peptides by picosecond spectroscopy, Proc. Natl. Acad. Sci. USA 75:4652–4656.Google Scholar
  59. Frank, H. A., Bolt, J., Friesner, R., and Sauer, K., 1979, Magnetophotoselection of the triplet state of reaction centers from Rhodopseudomonas sphaeroides R-26, Biochim. Biophys. Acta 547:502–511.Google Scholar
  60. French, C. S., Smith, J. H. C., Virgin, H. I., and Airth, R. J., 1956, Fluorescence-spectrum curves of chlorophylls, pheophytins, phycoerythrins, phycocyanins and hypericin, Plant Physiol. 31:369–374.Google Scholar
  61. Fucaloro, A. F., and Forster, L. S., 1971, Stretched-film spectra and transition moments of nucleic acid bases, J. Am. Chem. Soc. 93:6443–6448.Google Scholar
  62. Fugate, R. D., and Song, P. -S., 1976, Lifetime study of phototautomerism of alloxazine and lumichromes, Photochem. Photobiol. 24:479–481.Google Scholar
  63. Fujimori, E. and Livingston, R., 1957, Interactions of chlorophyll in its triplet state with oxygen, carotene, etc., Nature 180:1036–1038.Google Scholar
  64. Fukuzawa, H., and Aki, K., 1979, Fluorescence studies on Hpoamide dehydrogenases of pig heart, J. Biochem. (Tokyo) 86:849–856.Google Scholar
  65. Galley, W. C., and Milton, J. G., 1979, Protein emission, Photochem. Photobiol. 29:179–184.Google Scholar
  66. Ghisla, S., Massey, V., Lhoste, J. -M., and Mayhew, S. G., 1975, Fluorescence characteristics of reduced flavins and flavoproteins, in: Reactivity of Flavins (K. Yagi, ed.), pp. 15–24, University of Tokyo Press, Tokyo.Google Scholar
  67. Giese, A., 1980, Hypericism, Photochem. Photobiol. Rev. 6:229–255.Google Scholar
  68. Goedheer, J. C., 1966, Visible absorption and fluorescence of chlorophyll and its aggregates in solution, in: The Chlorophylls (L. P. Vernon and G. R. Seely, ed.) pp. 147–185, Academic Press, New York.Google Scholar
  69. Gouterman, M., 1978, Optical Spectra and electronic structure of porphyrins and related rings, in: The Porphyrins (D. Dolphin, ed.), Vol. III, Part A, pp. 1–165, Academic Press, New York.Google Scholar
  70. Grabe, B., 1972, Electronic structure and spectra of lumiflavin calculated by a restricted Hartree-Fock method, Acta Chem. Scand. 26:4084–4100.Google Scholar
  71. Grabe, B., 1974, Semiempirical calculations on lumiflavin regarding electronic structure and spectra, Acta Chem. Scand. Ser. A 28:363–374.Google Scholar
  72. Granville, M. F., Holton, G. R., Kohler, B. E., Christensen, R. L., and D’Amico, K. L., 1979, Experimental confirmation of the dipole forbidden character of the lowest excited singlet state in 1, 3, 5, 7-octatetraene, J. Chem. Phys. 70:593–594.Google Scholar
  73. Gryczynski, I., Kawski, A., Paszyc, S., Rafalska, M., and Skalski, B., 1979a, Luminescence properties of the synthetic yrbase (Wye) and some model compounds Yt-(CH2),n-Ade, Bulletin de L’Academie Polonaise des Sciences 27:271–276.Google Scholar
  74. Gryczynski, I., Jung, Ch., Kawski, A., Paszyc, S., and Skalski, B., 1979b, Theoretical and experimental investigation on dipole moment of synthesized Yt-base in the ground and excited states, Z. Naturforsch. 34a: 172–175.Google Scholar
  75. Gryczynski, I., Kawski, A., Nowaczyk, K., Paszyc, S., and Skalski, B., 1981a, Temperature effect on the luminescence synthetized Krbase in PVA film, Biochem. Biophys. Res. Commun. 98:1070–1075.Google Scholar
  76. Gryczynski, I., Kawski, A., Paszyc, S., and Skowyra, T., 1981b, Quenching of the Yt-base fluorescence by heavy-atom induced intermolecular singlet-triplet energy transfer, Z. Naturforsch. 36a:76–77.Google Scholar
  77. Härders, H., Förster, S., Voelter, W., and Bacher, A., 1974, Problems in electronic state assignment based on circular dichroism. Optical activity of flavines and 8-substituted lumazines, Biochemistry 13:3360–3364.Google Scholar
  78. Hearst, J. E., 1981, Psoralen photochemistry, Annu. Rev. Biophys. Bioeng. 10:69–86.Google Scholar
  79. Hemmerich, P., and Haas, W., 1975, Recent developments in the study of “fully reduced flavin,” in: Reactivity of Flavins (K. Yagi, ed.), pp. 1–13, University Park Press, Baltimore.Google Scholar
  80. Holzwarth, A. R., Langer, E., Lehner, H., and Schaffner, K., 1980, Absorption, luminescence, solvent-induced circular dichroism and 1H NMR study of bilirubin dimethyl ester: Observation of different forms in solution, Photochem. Photohiol. 32:17–26.Google Scholar
  81. Hong, C. -B., Häder, M. A., Häder, D. -P., and Poff, K. L., 1981, Phototaxis in Dictyostelium discoideum amoebae, Photochem. Photohiol. 33:373–377.Google Scholar
  82. Hønnås, P. I., and Steen, H. B., 1970, X-ray- and UV-induced excitation of adenine thymine and the related nucleosides and nucleotides in solution at 77°K, Photochem. Photohiol. 11:67–76.Google Scholar
  83. Hotchandani, S., Paquin, P., and Leblanc, R. M., 1978, Polarized fluorescence study of retinals at room temperature, Can. J. Chem. 56:1985–1988.Google Scholar
  84. Houssier, C., and Sauer, K., 1969, Optical properties of the protochlorophyll pigments II. Electronic absorption, fluorescence, and circular dichroism spectra, Biochim. Biophys. Acta 172:492–502.Google Scholar
  85. Houssier, C., and Sauer, K., 1970, Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments, J. Am. Chem. Soc. 92:779–791.Google Scholar
  86. Hudson, B., and Kohler, B. E., 1974, Linear polyene electronic structure and spectroscopy, Annu. Rev. Phys. Chem. 25:437–460.Google Scholar
  87. Hug, W., and Tinoco, I., Jr., Electronic spectra of nucleic acid bases. I. Interpretation of the in-plane spectra with the aid of all valence electron MO-CI calculations, J. Am. Chem. Soc. 95:2803–2812.Google Scholar
  88. Hug, W., and Tinoco, I., Jr., 1974, Electronic spectra of nucleic acid bases. II. Out-of-plane transitions and the structure of the nonbonding Orbitals, J. Am. Chem. Soc. 96:665–673.Google Scholar
  89. Irie, S., Egami, F., and Inoue, Y., 1969, Oligonucleotide studies. VII. Optical rotary dispersion of adenyl-(3’-5’)-4-thiouridine and guanylyl-(3’-5’)-4-thiouridine, J. Am. Chem. Soc. 91:1582–1584.Google Scholar
  90. Jeffrey, S. W., 1972, Preparation and some properties of crystalline chlorophyll c 1 and c 2 from marine algae, Biochim. Biophys. Acta 279:15–33.Google Scholar
  91. Johansson, L. B. -Å., Davidson, Å., Lindbolm, G., and Naqvi, K. R., 1979, Electronic transitions in the isoalloxazine ring and orientation of flavins in model membranes studied by polarized light spectroscopy, Biochemistry 18:4249–4253.Google Scholar
  92. Johnson, W. C., 1971, A circular dichroism spectrometer for the vacuum ultraviolet, Rev. Sci. Instrum. 42:1283–1286.Google Scholar
  93. Kasai, S., Miura, R., and Matsiu, K., 1975, Chemical structure and some properties of roseoflavin, Bull. Chem. Soc. Jpn. 48:2877–2880.Google Scholar
  94. Knowles, A., and Roe, E. M. F., 1968, DMS UV Atlas of Organic Compounds 4, Verlag, Chemie, Weinheim.Google Scholar
  95. Koka, P., and Song, P. -S., 1977, The chromophore topography and binding environment of peridinin-chlorophyll a-protein complexes from marine dinoflagellate algae, Biochim. Biophys. Acta 495:220–231.Google Scholar
  96. Kotaki, A., and Yagi, K., 1970, Fluorescence properties of flavins in various solvents, J. Biochem. (Tokyo) 68:509–516.Google Scholar
  97. Kotaki, A., Naoi, M., Okuda, J., and Yagi, K., 1967, Absorption and fluorescence spectra of riboflavin tetrabutyrate in various solvents, J. Biochem. 61:404–406.Google Scholar
  98. Koziol, J., 1966, Studies on flavins in organic solvents-I. Spectral characteristics of riboflavin, riboflavin tetrabutyrate and lumichrome, Photochem. Photobiol. 5:41–54.Google Scholar
  99. Koziol, J., 1971, Discussion, in: Flavins and Flavoproteins (H. Kamin, ed.), pp. 54–59, University Park Press, Baltimore.Google Scholar
  100. Kwak, Y. -W., 1981, A theoretical analysis of the phototransformation of phytochrome, Dissertation, Texas Tech University, Lubbock, Texas.Google Scholar
  101. Lagarias, J. C., and Rapoport, H., 1980, Chromopeptides from phytochrome. The structure and linkage of the Pr form of the phytochrome chromophore, J. Am. Chem. Soc. 102:4821–4828.Google Scholar
  102. Lamola, A. A., Eisinger, J., Blumberg, W. E., Patel, S. C., and Flores, J., 1979a, Fluorometric study of the partition of bilirubin among blood components: Basis for rapid microassays of bilirubin and bilirubin binding capacity in whole blood, Anal. Biochem. 100:25–42.Google Scholar
  103. Lamola, A. A., Flores, J., Blumberg, W. E., and Eisinger, J., 1979b, Optical properties of bilirubin photoisomers, Abstracts, Am. Soc. Photobiol. 7:143.Google Scholar
  104. Lamola, A. A., Blumberg, W. E., McCleod, R., and Fanoroff, A., 1981, Photoisomerized bilirubin in blood from infants receiving phototherapy, Proc. Natl. Acad. Sci. USA 78:1882–1886.Google Scholar
  105. Latimer, P., Bannister, T. T., and Rabinowitch, E., 1956, Quantum yields of fluorescence of plant pigments, Science 724:585–586.Google Scholar
  106. Lee, T. Y., Jung, J., and Song, P. -S., 1980, Spectroscopic characterization of a-crustacyanin, J. Biochem. (Tokyo) 88:663–668.Google Scholar
  107. Lewis, T. P., and Eaton, W. A., 1971, Polarized single-crystal absorption spectrum of cytosine monohydrate, J. Am. Chem. Soc. 93:2054–2056.Google Scholar
  108. Li, T. M., Hook, J. W., III, Drickamer, H. G., and Weber, G., 1976, Effects of pressure upon the fluorescence of riboflavin binding protein and its flavin mononucleotide complex, Biochemistry 15:3205–3211.Google Scholar
  109. Livingston, R., 1960, Physiocochemical aspects of some recent work on photosynthesis, Q. Rev. 14:174–199.Google Scholar
  110. Longworth, J. W., Rahn, R. O., and Shulman, R. G., 1966, Luminescence of pyrimidines, purines, nucleosides, and nucleotides at 77°K. The effect of ionization and tautomerization, J. Chem. Phys. 45:2930–2965.Google Scholar
  111. Lumry, R., and Herschberger, M., 1978, Status of indole photochemistry with special reference to biological applications, Photochem. Photobiol. 27:819–840.Google Scholar
  112. Lyalin, G. N., Sirota, V. G., and Filimonov, V. N., 1973, Spectral investigations of the photochemistry of adsorbates of the flavins-II. Infrared spectra of adsorbed flavins, Biofizika 18:618–623.Google Scholar
  113. Mackenthun, M. L., Tom, R. D., and Moore, T. A., 1979, Lobster shell carotenoprotein organization in situ studied by photoacoustic spectroscopy, Nature 278:861–862.Google Scholar
  114. Mantulin, W. W., and Song, P. -S., 1973, Excited states of skin-sensitizing coumarins and psoralens. Spectroscopic studies,J. Am. Chem. Soc. 95:5122–5129.Google Scholar
  115. Massey, V., 1980, Possible photoregulation inflavoproteins, in: Photoreception and Sensory Transduction in Aneural Organisms (F. Lenci and G. Colombetti, eds.), pp. 253–269, Plenum Publishing Corporation, New York.Google Scholar
  116. McDonagh, A. F. M., Palma, L. A., and Lightner, D. A., 1980, Blue light and bilirubin excretion, Science 208:145–151.Google Scholar
  117. Miles, D., and Urry, D. W., 1968, Reciprocal relations and proximity of bases in flavinadenine dinucleotide, Biochemistry 7:2791–2798.Google Scholar
  118. Minegishi, T., Hoshi, T., and Tanizaki, Y., 1978, Assignment of electronic spectra of coumarin and its 4- and 7-hydroxy derivatives,J. Chem. Soc. Jpn. (in Japanese) 5:649–653.Google Scholar
  119. Moffitt, W., 1956, Optical rotatory dispersion of helical polymers, J. Chem. Phys. 25:467–478.Google Scholar
  120. Moffitt, W., and Yang, J. T., 1956, Optical rotary dispersion of simple polypeptides, Proc. Natl. Acad. Sci. USA 42:596–603.Google Scholar
  121. Moore, T. A., and Song, P. -S., 1974a, Electronic spectra of carotenoids. β-Carotene, J. Mol. Spectrosc. 52:209–215.Google Scholar
  122. Moore, T. A., and Song, P. -S., 1974b, Electronic spectra of carotenoids. Schiffs bases of carotenal and carotenones, J. Mol. Spectrosc. 52:224–232.Google Scholar
  123. Moore, T. A., Harter, M. L., and Song, P. S., 1971, Ultraviolet spectra of coumarins and psoralens, J. Mol. Spectrosc. 40:144–157.Google Scholar
  124. Morton, R. A., 1975, Biochemical Spectroscopy, Vols. 1 and 2, John Wiley and Sons, New York.Google Scholar
  125. Müller, F., 1981, Spectroscopy and photochemistry of flavins and flavoproteins, Photochem. Photobiol. 34:753–759.Google Scholar
  126. Müller, A., and Lumry, R., 1965, The relation between prompt and delayed emission in photosynthesis, Proc. Natl. Acad. Sci. USA 54:1479–1482.Google Scholar
  127. Murata, N., Nishimura, M., and Takamiya, A., 1966, Fluorescence of chlorophyll in photosynthetic systems III. Emission and action spectra of fluorescence-three emission bands of chlorophyll a and the energy transfer between two pigment systems, Biochim. Biophys. Acta 126:234–243.Google Scholar
  128. Nakano, K., Sugimoto, T., and Suzuki, H., 1979, Note on the theory of 3-methyl lumiflavin in solution, Bull. Sci. Eng. Res. Lab. Waseda Univ. 87:70–83.Google Scholar
  129. Nakano, K., Sugimoto, T., and Suzuki, H., 1980, On the theory of 3-methyl lumiflavin in solution, J. Phys. Soc. Jpn. 48:939–942.Google Scholar
  130. Nakashima, N., Yoshihara, K., Tanaka, F., and Yagi, K., 1980, Picosecond fluorescence lifetime of the coenzyme of D-amino acid oxidase, J. Biol. Chem. 255:5261–5263.Google Scholar
  131. Nishimoto, K., Watanabe, Y., and Yagi, K., 1978, Hydrogen bonding of flavoprotein: I. Effect of hydrogen bonding on electronic spectra of flavoprotein, Biochim. Biophys. Acta 526:34–41.Google Scholar
  132. Ohad, I., Clayton, R. K., and Bogorad, L., 1979, Photoreversible absorbance changes in solutions of allophycocyanin purified from Fremyella diplosiphon: Temperature dependence and quantum efficiency, Proc. Natl. Acad. Sci. USA 76:5655–5659.Google Scholar
  133. Ohki, K., and Fujita, Y., 1979, Photoreversible absorption changes of guanidine-HCI-treated phycocyanin and allophycocyanin isolated from the blue-green alga Tolypothrix tenuis,Plant Cell Physiol. 20:483–490.Google Scholar
  134. Ou, C. -N., Tsai, C. -H., and Song, P. -S., 1977, Excited states of skin-sensitizing psoralens and their reactions with nucleic acids, in: Research in Photobiology (A. Castellani, ed.), pp. 257–265. Plenum, New York.Google Scholar
  135. Parkhurst, L. J., and Anex, B. G., 1966, Polarization of the lowest-energy allowed transition of β-ionylidene crotonic acid and the electronic structure of the polyenes, J. Chem. Phys. 45:862–873.Google Scholar
  136. Pearlstein, R. M., and Hemenger, R. P., 1978, Bacteriochlorophyll electronic transition moment directions in bacteriochlorophyll a-protein, Proc. Natl. Acad. Sci. USA 75:4920–4924.Google Scholar
  137. Pearlstein, R. M., Davis, R. C., and Ditson, S. L., 1982, Giant circular dichroism of high molecular weight chlorophyllide-apomyoglobic complexes, Proc. Natl. Acad. Sci. USA 79:400–402.Google Scholar
  138. Perrin, M. H., Gouterman, M., and Perrin, C. L., 1969, Vibronic coupling. VI. Vibronic borrowing in cyclic polyenes and porphyrins,J. Chem. Phys. 50:4137–4150.Google Scholar
  139. Petke, J. D., Maggiora, G. M., Shipman, L., and Christoffersen, R. E., 1979, Stereo-electronic properties of photosynthetic and related systems-V. Ab initio configuration interaction calculations on the ground and lower excited singlet and triplet states of ethyl chlorophyllide a and ethyl pheophorbide a, Photochem. Photobiol. 30:203–223.Google Scholar
  140. Plantenkamp, R. J., den Blanken, H. J., and Hoff, A. J., 1980, Single-site absorption spectroscopy of pheophytin-a and chlorophyll-a in a n-octane matrix, Chem. Phys. Lett. 76:35–41.Google Scholar
  141. Pochon, F., Leng, M., and Michelson, A. M., 1968, Photochimie des polynucleotides III. Étude de la luminescence de polynucléotides αa température ordinäre, Biochim. Biophys. Acta 169:350–362.Google Scholar
  142. Poppe, W., and Grossweiner, L. I., 1975, Photodynamic sensitization by 8-methoxypsoralen via the singlet oxygen mechanism, Photochem. Photobiol. 22:217–219.Google Scholar
  143. Rafferty, C. N., and Clayton, R. K., 1979, Linear dichroism and the orientation of reaction centers of Rhodopseudomonas sphaeroides in dried gelatin, Biochim. Biophys. Acta 545:106–121.Google Scholar
  144. Ramabhadran, T. V., 1975, Effects of near-ultraviolet and violet radiations (313–405 nm) on DNA, RNA and protein synthesis in Escherichia coli B/r. Implications for growth delay, Photochem. Photobiol. 22:117–123.Google Scholar
  145. Ramabhadran, T. V., Fossum, T., and Jagger, J., 1976, Escherichia coli mutant lacking 4-thiouridine in its transfer ribonucleic acid, J. Bacteriol. 128:671–672.Google Scholar
  146. Rhodes, W., 1961, Hypochromism and other spectral properties of helical polynucleotides, J. Am. Chem. Soc. 83:3609–3617.Google Scholar
  147. Rich, A., and Kasha, M., 1960, Polarized absorption of oriented films of poly C at 24°C, J. Am. Chem. Soc. 82:6197–6199.Google Scholar
  148. Roux, S. J., McEntire, K., and Brown, W. E., 1982, Determination of extinction coefficients of oat phytochrome by quantitative amino acid analyses, Photochem. Photobiol. 35:537–544.Google Scholar
  149. Rubin, A. B., and Osnitskaya, L. K., 1963, Relation between the physiological state and average (time) length of bacteriochlorophyll fluorescence in cells of photosynthesizing bacteria, Mikrobiologiya 32:200–203.Google Scholar
  150. Rubin, A. B., Minchenkova, L. E., Krasnovskii, A. A., and Termerman, L. A., 1962, The average duration of fluorescence of protochlorophyll in the process of greening of etiolated leaves, Biofizika 7:571–577.Google Scholar
  151. Rüdiger, W., 1980, Phytochrome, a light receptor of plant photomorphogenesis, Structure and Bonding 40:101–141.Google Scholar
  152. Salares, V. R., Mendelsohn, R., Carey, P. R., and Berstein, H. J., 1976, Correlation between the absorption spectra and resonance raman excitation profiles of astazanthin, J. Phys. Chem. 80:1137–1141.Google Scholar
  153. Salares, V. R., Young, N. M., Bernstein, H. J., and Carey, P. R., 1977, Resonance raman spectra of lobster shell carotenoproteins and a model astaxanthin aggregate. A possible photobiological function for the yellow protein, Biochemistry 61:4751–4756.Google Scholar
  154. Salares, V. R., Young, N. M., Bernstein, H. J., and Carey, P. R., 1979, Mechanisms of spectral shifts in lobster carotenoproteins. The resonance raman spectra of ovoverdin and the crustacyanins, Biochim. Biophys. Acta 576:176–191.Google Scholar
  155. Sarkar, H. K., and Song, P. -S., 1981, Phototransformation and dark reversion of phytochrome in deuterium oxide, Biochemistry 20:4315–4320.Google Scholar
  156. Sarkar, H. K., Song, P. -S., Leong, T. -Y., and Briggs, W. R., 1982, A fluorescence lifetime assay of a membrane bound flavin from corn coleoptiles, Photochem. Photobiol. 35:593–595.Google Scholar
  157. Sasaki, M., Sakata, T., and Sukigara, M., 1977, Photochemical study on the photochemotherapy. I. Solvent effect on fluorescence spectrum of 8-methoxypsoralen, Chem. Lett. 6:701–704.Google Scholar
  158. Sauer, K., 1975, Primary events and the trapping of energy, in: Bioenergetics and Photosynthesis (Govindjee, ed.), pp. 115–181, Academic Press, New York.Google Scholar
  159. Scheer, H., 1981, Biliproteins, Agnew. Chem. Int. Ed. (Engl.) 20:241–261.Google Scholar
  160. Schmidt, W., 1980, Physiological bluelight reception, Structure and Bonding 41:1–44.Google Scholar
  161. Schmidt, W., 1981, Fluorescence properties of isotropically and anisotropically embedded flavins, Photochem. Photobiol. 34:7–16.Google Scholar
  162. Schmidt, W., 1983, The physiology of blue-light systems, in: The Biology of Photoreceptors (D. Cosens and D. V., ed. Prue), Cambridge University Press, Cambridge (in press).Google Scholar
  163. Schulten, K., and Karplus, M., 1972, On the origin of a low-lying forbidden transition in polyenes and related molecules, Chem. Phys. Lett. 14:305–309.Google Scholar
  164. Scolar-Nagelschneider, G., and Hemmerich, P., 1972, Circular dichroism, self interaction and side chain conformation of riboflavin and riboflavin analogues, Z. Naturforsch. 27b:1044–1046.Google Scholar
  165. Senger, H., (ed.), 1980, The Blue Light Syndrome, p. 665, Springer-Verlag, Berlin.Google Scholar
  166. Shalitin, N., and Feitelson, J., 1973, Thiouridine spectroscopy. Temperature dependences and decay kinetics in the deactivation of excited states, J. Chem. Phys. 59:1045–1051.Google Scholar
  167. Shiga, T., and Shiga, K., 1973, Analysis of the visible absorption and circular dichroism spectra of D-amino-acid oxidase complexes,J. Biochem. 74:103–109.Google Scholar
  168. Shipman, L. L., 1977, Oscillator and dipole strengths for chlorophyll and related molecules, Photochem. Photobiol. 26:287–292.Google Scholar
  169. Shuvalov, V. A., and Asadov, A. A., 1979, Arrangement and interaction of pigment molecules in reaction centers of Rhodopseudomonas viridis. Photodichroism and circular dichroism of reaction centers at 100°K, Biochim. Biophys. Acta 545:296–308.Google Scholar
  170. Skalski, B., Rayner, D. M., and Szabo, A. G., 1980, Ground-state complexes between polar solvents and 1-methylindole: The origin of the Stokes’ shift in their fluorescence spectra, Chem. Phys. Lett. 70:587–590.Google Scholar
  171. Song, P. -S., 1969, Theoretical considerations of the electronic spectra of methyl flavins, Int. J. Quantum Chem. 111:303–316.Google Scholar
  172. Song, P. -S., 1977a, Molecular aspects of some photobiological receptors, J. Kor. Agric. Chem. Soc. 20:10–25.Google Scholar
  173. Song, P. -S., 1977b, Physical methods and techniques, Part (iii) ultraviolet and visible spectroscopy of bio-organic molecules, Annual Reports (B), Chem. Soc, London, pp. 18–40.Google Scholar
  174. Song, P. -S., 1980, Spectroscopic and photochemical characterization of flavoproteins and carotenoproteins as blue light photoreceptors, in: The Blue Light Syndrome (H. Senger, ed.), pp. 157–171, Springer-Verlag, Berlin/Heidelberg/New York.Google Scholar
  175. Song, P. -S., 1981a, Photosensory transduction in Stentor coeruleus and related organisms, Biochim. Biophys. Acta 639:1–29.Google Scholar
  176. Song, P. -S., 1981b, Electronic spectroscopy of photobiological receptors, Can. J. Spectrosc. 26:59–72.Google Scholar
  177. Song, P. -S., 1983, The molecular basis of phytochrome (Pfr) and its interactions with model phytochrome receptors, in: The Biology of Photoreceptors (D. Cosens and D. V. Prue, eds.), Cambridge University Press, Cambridge (in press).Google Scholar
  178. Song, P. -S., and Chae, Q., 1979, The transformation of phytochrome to its physiologically active form, Photochem. Photobiol. 30:117–123.Google Scholar
  179. Song, P. -S., and Gordon, W. H., III, 1970, A spectroscopic study of the excited states of coumarin, J. Phys. Chem. 74:4234–4240.Google Scholar
  180. Song, P. -S., and Kurtin, W. E., 1969, A spectroscopic study of the polarized luminescence of indoles,J. Am. Chem. Soc. 91:4892–4906.Google Scholar
  181. Song, P. -S., and Lee, T. Y., 1979, Excited states of photoreceptor molecules. I. Peridinin, J. Kor. Chem. Soc. 23:314–319.Google Scholar
  182. Song, P. -S., and Moore, T. A., 1974, On the photoreceptor pigment for phototropism and phototaxis: Is a carotenoid the most likely candidate? Photochem. Photobiol. 19:435–441.Google Scholar
  183. Song, P. -S., and Tapley, K. J., 1979, Photochemistry and photobiology of psoralens, Photochem. Photobiol. 29:1177–1197.Google Scholar
  184. Song, P. -S., Moore, T. A., and Kurtin, W. E., 1972a, Interactions involving the excited states, Z. Naturforsch. 27b: 1011–1015.Google Scholar
  185. Song, P. -S., Moore, T. A., and Sun, M., 1972b, Excited states of some plant pigments, in: The Chemistry of Plant Pigments (C. O. Chichester, ed.), pp. 33–74, Academic Press, New York.Google Scholar
  186. Song, P. -S., Chae, Q., Lightner, D. A., Briggs, W. R., and Hopkins, D., 1973, Fluorescence characteristics of phytochrome and biliverdins, J. Am. Chem. Soc. 95:7892–7894.Google Scholar
  187. Song, P. -S., Chae, Q., and Briggs, W. R., 1975, Temperature dependence of the fluorescence quantum yield of phytochrome, Photochem. Photobiol. 22:75–76.Google Scholar
  188. Song, P. -S., Koka, P., Prezelin, B., and Haxo, F. T., 1976, Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates, Biochemistry 15:4423–4427.Google Scholar
  189. Song, P. -S., Chin, C. -A., Yamazaki, I., and Baba, H., 1977, Excited states of photobiological receptors. II. Chlorophylls, phytochrome and stentorin, Int. J. Quantum Chem.: Quantum Biol. Symp. 4:305–315.Google Scholar
  190. Song, P. -S., Chae, Q., and Gardner, J. G., 1979, Spectroscopic properties and chromophore conformations of the photomorphogenic receptor: Phytochrome, Biochim. Biophys. Acta 576:479–495.Google Scholar
  191. Song, P. -S., Walker, E. B., Vierstra, R. D., and Poff, K. L., 1980a, Roseoflavin as a blue light receptor analog: Spectroscopic characterization, Photochem. Photobiol. 32:393–398.Google Scholar
  192. Song, P. -S., Walker, E. B., Jung, J., Auerbach, R. A., Robinson, G. W., and Prezelin, B., 1980b, Primary processes of photobiological receptors, in: New Horizons in Biochemistry (M. Koike, T. Nagatsu, J. Okuda, and T. Ozawa, eds.), pp. 79–94, Japan Scientific Press, Tokyo.Google Scholar
  193. Song, P. -S., Shim, S. C., and Mantulin, W. W., 1981a, The electronic spectra of psoralens in their ground and triplet excited states, Bull. Chem. Soc. Jpn. 54:315–316.Google Scholar
  194. Song, P. -S., Walker, E. B., Auerbach, R. A., and Robinson, G. W., 1981b, Proton release from Stentor photoreceptors in the excited states, Biophys. J. 35:551–555.Google Scholar
  195. Spencer, R. D., and Weber, G., 1972, Thermodynamics and kinetics of the intramolecular complex in flavin-adenine dinucleotide, in: Structure and Function of Oxido-reduction Enzymes (A. Akeson and A. Ehrenberg, eds.), pp. 393–399, Pergamon Press, Oxford.Google Scholar
  196. Stewart, R. F., and Davidson, N., 1963, Polarized absorption spectra of purines and pyrimidines, J. Chem. Phys. 39:255–266.Google Scholar
  197. Stewart, R. F., and Jensen, L. H., 1964, Crystal structure of 9-methyladenine, J. Chem. Phys. 40:2071–2075.Google Scholar
  198. Strickland, E. H., Horwitz, J., and Billups, C., 1969, Fine structure in the near-ultraviolet circular dichroism and absorption spectra of tryptophan derivatives and chymotryp-sinogen A at 77°K, Biochemistry, 8:3205–3213.Google Scholar
  199. Strickland, E. H., Horwitz, J., and Billups, C., 1970, Near-ultraviolet absorption bands of tryptophan. Studies using indole and 3-methylindole as models, Biochemistry 9:4914–4921.Google Scholar
  200. Studdert, D. S., and Davis, R. C., 1974, Calculations of the circular dichroism of double-helical nucleic acids. II. Effects involving n π* transitions, Biopolymers 13:1391–1403.Google Scholar
  201. Studdert, D. S., Patroni, M., and Davis, R. C., 1972, Circular dichroism of DNA. Temperature and salt dependence, Biopolymers 11:761–779.Google Scholar
  202. Sun, M., and Song, P. -S., 1973, Excited states and reactivity of 5-deazaflavine. Comparative studies with flavin, Biochemistry 12:4663–4669.Google Scholar
  203. Sun, M., and Song, P. -S., 1977, Solvent effects on the fluorescent states of indole derivatives—dipole moments, Photochem. Photobiol. 25:3–9.Google Scholar
  204. Sun, M., Moore, T. A., and Song, P. -S., 1972, Molecular luminescence studies of flavins. I. The excited states of flavins, J. Am. Chem. Soc. 94:1730–1740.Google Scholar
  205. Sutherland, J. C., and Olson, J. M., 1981, Magnetic circular dichroism of bacteriochlorophyll a in solution and in a protein, Photochem. Photobiol. 33:379–384.Google Scholar
  206. Suzuki, S., Fujii, T., Imal, A., and Akahori, H., 1977, The fluorescent level inversion of dual fluorescences and the motional relaxation of excited state molecules in solutions, J. Phys. Chem. 81:1592–1598.Google Scholar
  207. Szabo, A. G., and Rayner, D. M., 1980, Fluorescence decay of tryptophan conformers in aqueous solution, J. Am. Chem. Soc. 102:554–563.Google Scholar
  208. Teale, F. W. J., and Weber, G., 1957, Ultraviolet fluorescence of the aromatic amino acids, Biochem. J. 65:476–482.Google Scholar
  209. Thrash, R. J., Fang, H. L. B., and Leroi, G. E., 1977, The Raman excitation profile spectrum of β-carotene in the preresonance region: Evidence for a low-lying singlet state, J. Chem. Phys. 67:5930–5933.Google Scholar
  210. Thümmler, F., Brandlmeier, T., and Rüdiger, W., 1981, Preparation and properties of chrom-opeptides from the Pfr form of phytochrome, Z. Naturforsch. 36c:440–449.Google Scholar
  211. Thurnauer, M. C., and Norris, J. R., 1977, The ordering of the zero field triplet spin sublevels in the chlorophylls. A magnetophotoselection study, Chem. Phys. Lett. 47:100–105.Google Scholar
  212. Tinoco, I., Jr., 1960, Hypochromism in polynucleotides,J. Am. Chem. Soc. 82:4785–4790.Google Scholar
  213. Tollin, G., 1968, Magnetic circular dichroism and circular dichroism of riboflavin and its analogs, Biochemistry 7:1720–1727.Google Scholar
  214. Tollin, G., and Edmondson, D. E., 1971, Flavoprotein chemistry I. Circular dichroism studies of the flavin chromophore and of the relation between redox properties and flavin environment in oxidases and dehydrogenases, Biochemistry 10:113–124.Google Scholar
  215. Umetskaya, V. N., and Turoverov, K. K., 1978, Study of the excited state of indole. Dichroism spectrum of stretched polyethylene films activated with indole, Opt. Spektrosk. 44:1090–1095.Google Scholar
  216. Valeur, B., and Weber, G., 1977, Resolution of the fluorescence excitation spectrum of indole into the 1La and 1Lb excitation bands, Photochem. Photobiol. 25:441–444.Google Scholar
  217. Veeger, C., Visser, A. J. W. G., Krul, J., Grande, H. J., de Abreu, R. A., and de Kok, A., 1976, Fluorescence studies on lipoamide dehydrogenases, pyruvate dehydrogenase complexes and transhydrogenase, in: Flavins and Flavoproteins (T. P. Singer, ed.), pp. 500–509, Elsevier, Amsterdam.Google Scholar
  218. Veeger, C., Visser, T., Eweg, J.-K., Grande, H., de Abreu, R., de Graaf-Hess, A., and Müller, F., 1980, Fluorescence of oxidized and reduced flavins and flavoproteins, in: Flavins and Flavoproteins (K. Yagi and T. Yamano, eds.), pp. 349–357, University Park Press, Baltimore.Google Scholar
  219. Vermeglio, A., Breton, J., Paillotin, G., and Cogdell, R., 1978, Orientation of chromophores in reaction centers of Rhodopseudomonas sphaeroides: A photoselection study, Biochim. Biophys. Acta 501:514–530.Google Scholar
  220. Vierstra, R. D., Poff, K. L., Walker, E. B., and Song, P. -S., 1981, Effect of xenon on the excited states of phototropic receptor flavin in corn seedlings, Plant Physiol. 67:996–998.Google Scholar
  221. Visser, A. J. W. G., and van Hoek, A., 1979, The measurement of subnanosecond fluorescence decay of flavins using time-correlated photon counting and a mode-locked Ar ion laser, J. Biochem. Biophys. Methods 1:195–208.Google Scholar
  222. Visser, A. J. W. G., Ghisla, S., Massey, V., Müller, F., and Veeger, C., 1979, Fluorescence properties of reduced flavins and flavoproteins, Eur. J. Biochem. 101:13–21.Google Scholar
  223. Wahl, Ph., Auchet, J. C., Visser, A. J. W. G., and Müller, F., 1974, Time resolved fluorescence of flavin adenine dinucleotide, FEBS Lett. 44:67–70.Google Scholar
  224. Walker, E. B., 1980, Photosensory transduction in Stentor coeruleus, Ph.D. dissertation, Texas Tech University, Lubbock, Texas.Google Scholar
  225. Walker, E. B., Lee, T. Y., and Song, P. -S., 1979, Spectroscopic characterization of the Stentor photoreceptor, Biochim. Biophys. Acta 587:129–144.Google Scholar
  226. Warshel, A., 1979, On the origin of the red shift of the absorption spectra of aggregated chlorophylls, J. Am. Chem. Soc. 101:744–746.Google Scholar
  227. Wasielewski, M. R., Norris, J. R., Shipman, L. L., Lin, C. -P., and Svec, W. A., 1981, Monomeric chlorophyll a enol: Evidence for its possible role as the primary electron donor in photosystem I of plant photosynthesis, Proc. Natl. Acad. Sci. USA 78:2957–2961.Google Scholar
  228. Weber, G., and Teale, F. W. J., 1957, Determination of the absolute quantum yield of fluorescent solutions, Trans. Faraday Soc. 53:646–655.Google Scholar
  229. Weinryb, I., and Steiner, R. F., 1968, The luminescence of tryptophan and phenylalanine derivatives, Biochemistry 7:2488–2495.Google Scholar
  230. Weiss, C., 1978, Electronic absorption spectra of chlorophylls, in: The Porphyrins (D. Dolphin, ed.), Vol. III, Part A, pp. 211–223, Academic Press, New York.Google Scholar
  231. Weiss, C., Jr., 1972, The Pi electron structure and absorption spectra of chlorophylls in solution, J. Mol. Spectrosc. 44:37–80.Google Scholar
  232. Yagi, K., 1956, The Biochemistry of Flavins (in Japanese), pp. 15–16, Kyoritsu Publishing Company, Tokyo.Google Scholar
  233. Yagi, K., Ohishi, N., Naoi, M., and Kotaki, A., 1969, Solvent effect on fluorescence of fat-soluble riboflavin derivatives, Arch. Biochem. Biophys. 134:500–505.Google Scholar
  234. Yagi, K., Ohishi, N., Nishimoto, K., Choi, J. D., and Song, P. -S., 1980, Effect of hydrogen bonding on electronic spectra and reactivity of flavins, Biochemistry 19:1553–1557.Google Scholar
  235. Yagi, K., Osamura, N., and Ohishi, N., 1972, Absorption and fluorescence spectra of riboflavin di- and tributyrate,J. Biochem. (Tokyo) 71:551–553.Google Scholar
  236. Yamamoto, Y., and Tanaka, J., 1972, Polarized absorption spectra of crystals of indole and its related compounds, Bull. Chem. Soc. Jpn. 45:1362–1366.Google Scholar
  237. Yu, M. W., Fritchie, Jr., C. J., Fucaloro, A. F., and Anex, B. G., 1976, Polarization characteristics of flavin spectra. Specular reflectivity of bis (10-methyliso-alloxazine) copper (II) Perchlorate tetrahydrate, J. Am. Chem. Soc. 98:6496–6500.Google Scholar
  238. Zagalsky, P. F., 1976, Carotenoid-protein complexes, Pure Appl. Chem. 47:103–120.Google Scholar
  239. Zagalsky, P. F., and Cheesman, D. F., 1963, Purification and properties of crustacyanin (lobster shell pigment), Biochem. J. 89:21.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Pill-Soon Song
    • 1
  1. 1.Department of ChemistryTexas Tech UniversityLubbockUSA

Personalised recommendations