Construction and Transfer into Mammalian Cells of a Vector Containing Insect Histone Genes

  • Raymond Reeves
  • Cornelia M. Gorman
  • Bruce H. Howardt
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 61)


As illustrated by other articles in this volume, with the advent of recombinant DNA technology and methods for introducing functional foreign genes into many types of eukaryotic cells, a revolution has occurred in the level of our understanding of the way genes are regulated in living cells. Nonetheless, in spite of the impressive progress made concerning the role of DNA sequence in functions such as promotion, enhancement, initiation of transcription, splicing, polyadenylation and termination, much remains to be learned. It is worth considering, for example, whether such information, by itself, will enable us to understand the subtleties of gene expression and regulation known to occur during complex cellular processes such as development and differentiation. For, in addition to the obvious importance of DNA sequence in the regulation of gene activity in eukaryotic cells, it is very likely that genomic function is also regulated by the structure and composition of the chromatin itself1–4. Thus, it seems reasonable to predict that a complete knowledge of the mechanisms regulating genomic activity in eukaryotic cells will only come when we understand both the structure and function of all the various components of chromatin.


Protoplast Fusion Histone Gene Tissue Culture Cell Chloramphenicol Acetyl Transferase Chloramphenicol Acetyl Transferase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Lewin, “Gene Expression 2: Eucaryotic Chromosomes,” John Wiley & Sons, New York (1980).Google Scholar
  2. 2.
    G. Felsenfeld, Chromatin, Nature, 271:115 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    J. D. McGee and G. Felsenfeld, Nucleosome structure, Annu. Rev. Biochem., 49:1115 (1980).CrossRefGoogle Scholar
  4. 4.
    S. Weisbrod, Active chromatin, Nature, 297:289 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    I. Isenberg, Histones, Annu. Rev. Biochem., 48:159 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    S. G. Franklin and A. Zweidler, Non-allelic variants of histones H2a, 2b and 3 in mammals, Nature, 266:273 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    W. M. Bonner, M. H. West and J. D. Stedman, Two-dimensional gel analysis of histones in acid extracts of nuclei, cells and tissues, Eur. J. Biochem., 109:17 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    R. Romberg, Structure of chromatin, Annu. Rev. Biochem., 46:931 (1977).CrossRefGoogle Scholar
  9. 9.
    C. M. Gorman, L. F. Moffat and B. H. Howard, Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells, Molec. Cell Biol. in press (1982),Google Scholar
  10. 10.
    R. Wu, Ed., “Recombinant DNA”, Methods Enzymol., vol. 68, Academic Press, New York (1979).Google Scholar
  11. 11.
    R. Davis, D. Botstein and J. R. Roth, “Advanced Bacterial Genetics: A Manual for genetic Engineering,” Cold Spring Harbor Laboratory, New York (1980).Google Scholar
  12. 12.
    R. Mulligan, B. H. Howard and P. Berg, Synthesis of rabbit 3-globin in cultured monkey cells following infection with a SV40 3-globin recombinant genome, Nature, 277: 108 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    M. L. Goldberg, “Sequence Analysis of Drosophila Histone Genes,” Ph.D. Thesis, Stanford University (1979).Google Scholar
  14. 14.
    R. P. Lifton, M. L. Goldberg, R. W. Karp and D. S. Hogness, The organization of the histone genes in Drosophila melanogaster: Functional and evolutionary implications, Cold Spring Harbor Symp. Quant. Biol., 42:1047 (1977).CrossRefGoogle Scholar
  15. 15.
    R. C. Mulligan, P. F. Southern, B. H. Howard, M. Yaniv, A. I. Geller and P. Berg, Construction and potential uses for a family of mammalian transducing vectors, J. Molec. Appl Genet., in press (1982).Google Scholar
  16. 16.
    F. Graham and A. van der Eb, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology, 52: 456 (1978).CrossRefGoogle Scholar
  17. 17.
    W. Schaffner, Direct transfer of cloned genes from bacteria to mammlaian cells, Proc. Natl. Acad. Sci. USA, 77:2163 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    R. M. Sandri-Goldin, A. L. Goldin, M. Levine and J. C. Glorioso, High-frequency transfer of cloned Herpes simplex virus type 1 sequences to mammalian cells by protoplast fusion, Molec. Cell. Biol., 8:743 (1981).Google Scholar
  19. 19.
    S. Panyim and R. Chalkley, High resolution acrylamide gel electrophoresis of histones, Arch. Biochem. Biophys., 130:337 (1969).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Zweidler, Resolution of histones by Polyacrylamide gel electrophoresis in the presence of nonionic detergents, Methods Cell. Biol., 17:223 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    R. C. Mulligan and P. Berg, Expression of a bacterial gene in mammalian cells, Science, 209:1422 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    R. C. Mulligan and P. Berg, Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase, Proc. Natl. Acad. Sci. USA, 78:2072 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    P. Berg, Dissections and reconstructions of genes and chromosomes, Science, 213:296 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    D. Schumperli, B. H. Howard and M. Rosenberg, Efficient expression of the E coli galactokinase gene in mammalian cells, Proc. Natl. Acad. Sci. USA, 79:257 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    P. J. Southern and P. Berg, Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter, J Molec. Appl. Genet., in press (1982).Google Scholar
  26. 26.
    C. M. Gorman, G. T. Merlino, M. C. Willinghara, I. Pastan and B. H. Howard, The Rouse sarcoma virus 3’ long terminal repeat is a strong promoter when introduced into a variety of eucaryotic cells by DNA mediated transfection, manuscript submitted (1982).Google Scholar
  27. 27.
    C. R. Alfageme, A. Zweidler, A. Mahowald and L. H. Cohen, Histones of Drosophila embryos, J. Biol. Chem., 249:3729 (1974).PubMedGoogle Scholar
  28. 28.
    T. W. Borun, M. B. Scharff and E. Robbins, Rapidly labeled, polyribosome associated, RNA having the properties of histone messenger, Proc. Natl. Acad. Sci. USA 58:1977 (1967).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Raymond Reeves
    • 1
  • Cornelia M. Gorman
    • 2
  • Bruce H. Howardt
    • 2
  1. 1.Biochemistry/Biophysics ProgramWashington State UniversityPullmanUSA
  2. 2.Laboratory of Molecular BiologyNational Cancer InstituteBethesdaUSA

Personalised recommendations