Transfer of DNA into Higher Eukaryotic Cells Using Recombinant Vectors Based on Simian Virus 40 and Chloramphenicol Acetyltransferase Genes

  • Cornelia M. Gorman
  • Raji Padmanabhan
  • Bruce H. Howard
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 61)


Over the past few years considerable progress has been made in the development of eukaryotic vectors. There have been reports describing improved methods for introduction of DNA into mammalian cells 1–3, more sensitive assays for vector function 4,5, and new selectable markers for stable transformation of tissue culture cells 6–8. In this article we present recent work from our laboratory relating to these areas.


Simian Virus Rous Sarcoma Virus Thymidine Kinase Gene Chloramphenicol Acetyltransferase Dominant Selectable Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Parker and G. Stark, Regulation of simian virus 40 transcription: sensitive analysis of the RNA species present early in infections by virus or viral DNA, J. Virol. 31:360 (1979).PubMedGoogle Scholar
  2. 2.
    W. Schaffner, Direct transfer of cloned genes from bacteria to mammalian cells, Proc. Natl. Acad. Sci. USA 77:2163 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    L.M. Sompayrac and K.J. Danna, Efficient infection of monkey cells with DNA of simian virus 40, Proc. Natl. Acad. Sci. USA 78:7575 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    D. Schumperli, B.H. Howard, and M. Rosenberg, Efficient expression of Escherichia coli galactokinase gene in mammalian cells, Proc. Natl. Acad. Sci. USA 79:257 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    B. Fong and M. Scriba, Use of 125-I deoxycytidine to detect Herpes simplex virus specific thymidine kinase in tissues of latently infected guinea pigs, J. Virol. 34:644 (1980).PubMedGoogle Scholar
  6. 6.
    R.C. Mulligan and P. Berg, Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyl transferase, Proc. Natl. Acad. Sci. USA 78:2072 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    F. Colbere-Garapin, F. Horodniceanu, P. Kourilsky, and A.C. Garapin, A new dominant hybrid selective marker for higher eukaryotic cells, J. Mol. Biol. 150:1 (1981)PubMedCrossRefGoogle Scholar
  8. 8.
    P.J. Southern and P. Berg, Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter, J. Molec. Appl. Genet. 1:327 (1982).Google Scholar
  9. 9.
    S.P. Goff and P. Berg, Construction of hybrid viruses containing SV40 and lambda phage DNA segments and their propagation in cultured monkey cells, Cell 9:695 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    G. Ganem, A.L. Nussbaum, D. Davoli, and G.C. Fareed, Propagation of a segment of bacteriophage lambda DNA in monkey cells after covalent linkage to a defective simian virus 40 genome, Cell 7:349 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    W. Fiers, R. Contreras, G. Haegeman, R. Rogiers, A. van de Voorde, H. van Heuverswyn, J. van Herreweghe, G. Volckaert, and M. Ysebaert, Complete nucleotide sequence of SV40 DNA, Nature, 273:113 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    V.G. Reddy, B. Thimmappaya, R. Dhar, K.N. Subramanian, B.S. Zain, J.Pan, P.K. Ghosh, M.L. Celma, and S.M. Weissman, The genome of simian virus 40, Science 200:494 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    V.G. Reddy, P.K. Ghosh, P. Lebowitz, M. Piatak, and S.M. Weissman, Simian virus 40 early mRNAs, J. Virol. 30:279 (1979).PubMedGoogle Scholar
  14. 14.
    R.C. Mulligan, B.H. Howard, and P. Berg, Synthesis of rabbit 3-globin in cultured monkey kidney cells following infection with a SV40 β-globin recombinant genome, Nature 277:108 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    D.H. Hamer, K.D. Smith, S.H. Boyer, and P. Leder, SV40 recombinants carrying rabbit β-globin gene coding sequences, Cell 17:725 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    R.C. Mulligan and P. Berg, Expression of a bacterial gene in mammalian cells, Science 209:1422 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    P. Gruss and G. Khoury, Expression of simian virus 40-rat preproinsulin recombinants in monkey kidney cells: use of preproinsulin RNA processing signals, Proc. Natl. Acad. Sci. USA 78:133 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    P. Gruss, R.W. Ellis, T.Y. Shih, M. Konig, E.M. Scolnick, and G. Khoury, SV40 recombinant molecules express the gene encoding p21 transforming protein of Harvey murine sarcoma virus, Nature 293:486 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Zasloff, T. Santos, and D.H. Hamer, tRNA precursor transcribed from a mutant human gene inserted into a SV40 vector is processed incorrectly, Nature 295:533 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    M.M. Sveda and C.J. Lai, Functional expression in primate cells of cloned DNA coding for the hemagglutinin surface glycoprotein of influenza virus, Proc. Natl. Acad. Sci. USA 78:5488 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Wigler, S. Silverstein, L.S. Lee, A. Pellicer, Y. Cheng, and R. Axel, Transfer of purified Herpes virus thymidine kinase gene to cultured mouse cells, Cell 11:223 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Pellicer, M. Wigler, R. Axel, and S. Silverstein, The transfer and stable integration of the HSV thymidine kinase gene into mouse cells, Cell 14:133 (1978).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Wigler, R. Sweet, G.K. Sim, B. Wold, A. Pellicer, E. Lacy, T. Maniatis, S. Silverstein and R. Axel, Transformation of mammalian cells with genes from prokaryotes and eukaryotes, Cell 16:777 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Grodzicker and D.F. Klessig, Expression of unselected adenovirus genes in human cells co-transformed with the HSV-1 tk gene and adenovirus 2 DNA, Cell 21:453 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    I. Abraham, J.S. Tyagi, and M.M. Gottesman, Transfer of genes to Chinese hamster ovary cells by DNA-mediated transformation, Somat. Cell, Genet. 8:23 (1982).CrossRefGoogle Scholar
  26. 26.
    R. Subraraani, R. Mulligan, and P. Berg, Expression of the mouse dihydrofolate reductase complementary deoxyribonucleic acid in simian virus 40 vectors, Mol. Cell. Biol. 1:854 (1981).Google Scholar
  27. 27.
    G. Urlaub and L.A. Chasin, Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity, Proc. Natl. Acad. Sci. USA 77:4216 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    C.M. Gorman, L.F. Moffat, and B.H. Howard, Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells, Molec. Cell Biol. 2:1044–1051 (1982).PubMedGoogle Scholar
  29. 29.
    N. Alton and D. Vapnek, Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9, Nature 282:864 (1979).PubMedCrossRefGoogle Scholar
  30. 30.
    J. Cohen, T. Eccleshall, R. Needleman, H. Federoff, B. Buchferer, and J. Marmur, Functional expression in yeast of the Escherichia coli plasmid gene coding for chloramphenicol acetyltransferase, Proc. Natl. Acad. Sci. USA 77:1078 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    C.M. Gorman, G.T. Merlino, M.C. Willingham, I. Pastan, and B.H. Howard, The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eucaryotic cells by DNA mediated transfection, Proc. Natl. Acad. Sci. U.S.A. (in press).Google Scholar
  32. 32.
    I. Fettes, D. Haldar, and K. Freeman, Effect of chloramphenicol on enzyme synthesis and growth in mammalian cells, Can. J. Biochem. 50:200 (1972)PubMedCrossRefGoogle Scholar
  33. 33.
    M. Ziegler and R. Davidson, The effect of hexose on chloramphenicol sensitivity and resistance in Chinese hamster cells, J. Cell Physiol. 98:627 (1979).PubMedCrossRefGoogle Scholar
  34. 34.
    K. Freeman, Inhibition of mitochondrial and bacterial synthesis by chloramphenicol, Can. J. Biochem. 48:479 (1970).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Kearsey and I. Craig, Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance, Nature 290:607 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    A.R. Buchman, L. Burnett, and P. Berg, Appendix A, The SV40 nucleotide sequence, in: “Molecular Biology of Tumor Viruses,” Part 2, J. Tooze, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1980).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Cornelia M. Gorman
    • 1
  • Raji Padmanabhan
    • 1
  • Bruce H. Howard
    • 1
  1. 1.Laboratory of Molecular Biology, Division of Cancer Biology and DiagnosisNational Cancer Institutes, National Institutes of HealthBethesdaMarylandUSA

Personalised recommendations