Advertisement

Nitrate Reductase Genes as Selectable Markers for Plant Cell Transformation

  • A. Kleinhofs
  • J. Taylor
  • T. M. Kuo
  • D. A. Somers
  • R. L. Warner
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 61)

Abstract

Plant cell transformation, when finally established, will probably differ little from other eukaryotic systems such as fungi and animal cells. Assuming the accuracy of this statement, we presumed that the major factors delaying the establishment of a reliable plant cell transformation system are the lack of suitable selectable markers and the corresponding gene(s) in appropriate vectors. In order to rectify this situation, we undertook the establishment of a plant cell transformation system using nitrate reductase as the central component.

Keywords

Nitrate Reductase Nitrate Reductase Activity Molybdenum Cofactor Nitrate Reductase Gene Plant Cell Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amy, N. K., 1981, Identification of the molybdenum cofactor in chlorate-resistant mutants of Escherichia coli, J. Bacteriol., 148:274–282.PubMedGoogle Scholar
  2. Amy, N. K., and Rajagopalan, K. V., 1979, Characterization of molybdenum cofactor from Escherichia coli, J. Bacteriol., 140:114–124.PubMedGoogle Scholar
  3. Braaksma, F., 1982, Genetic control of nitrate reduction in Arabidopsis thaliana, Ph.D. Dissertation, University of Groningen, Haren, The Netherlands.Google Scholar
  4. Cove, D. J., 1979, Genetic studies of nitrate assimilation in Aspergillus nidulans, Biol. Rev. 54:291–327.PubMedCrossRefGoogle Scholar
  5. Dailey, F. A., Warner, R. L., Somers, D. A., and Kleinhofs, A., 1982a, Characteristics of a nitrate reductase in a barley mutant deficient in NADH nitrate reductase, Plant Physiol., 69:1200–1204.PubMedCrossRefGoogle Scholar
  6. Dailey, F. A., Kuo, T., and Warner, R. L., 1982b. Pyridine nucleotide specificity of barley nitrate reductase, Plant Physiol., 69:1196–1199.PubMedCrossRefGoogle Scholar
  7. De la Rosa, M. A., Vega, J. M., and Zumft, W. G., 1981, Composition and structure of assimilatory nitrate reductase from Ankis-trodesmus braunii, J. Biol. Chem., 256:5814–5819.PubMedGoogle Scholar
  8. Downey, R. J., and Steiner, F. X., 1979, Further characterization of the reduced nicotinamide adenine dinucleotide phosphate: Nitrate oxidoreductase in Aspergillus nidulans, J. Bacteriol., 137:105–114.PubMedGoogle Scholar
  9. Feenstra, W. J. and Jacobsen, E., 1980, Isolation of a nitrate reductase deficient mutant of Pisurn sativum by means of selection for chlorate resistance, Theor. Appl. Genet., 58: 39–42.CrossRefGoogle Scholar
  10. Giri, L., and Ramadoss, C. S., 1979, Physical studies on assimilatory nitrate reductase from Chlorella vulgaris, J. Biol. Chem., 254:11703–11712.PubMedGoogle Scholar
  11. Glimelius, K., Eriksson, T., Grafe, R., and Müller, A. J., 1978, Somatic hybridization of nitrate reductase-deficient mutants of Nicotiana tabacurn by protoplast fusion, Physiol. Plant., 44:273–277.CrossRefGoogle Scholar
  12. Guerrero, M. G., and Gutierrez, M., 1977, Purification and properties of the NAD(P)H: Nitrate reductase of the yeast Rhodo-torula glutinis, Biochim. Biophys. Acta, 482:272–285.PubMedGoogle Scholar
  13. Johnson, J. L., Hainline, B. E., and Rajagopalan, K. V., 1980, Characterization of the molybdenum cofactor of sulfite oxidase, xanthine oxidase, and nitrate reductase, J. Biol. Chem., 255:1783–1786.PubMedGoogle Scholar
  14. Ketchum, P. A., Cambier, H. Y., Frazier, W. A., III, Madansky, C. H., and Nason, A., 1970, In vitro assembly of Neurospora assimilatory nitrate reductase from protein subunits of a Neurospora mutant and the xanthine oxidizing or aldehyde oxidase systems of higher animals, Proc. Natl. Acad. Sci. USA, 66:1016–1023.PubMedCrossRefGoogle Scholar
  15. King, J., and Khanna, V., 1980, A nitrate reductase-less variant isolated from suspension cultures of Datura innoxia (Mill.), Plant Physiol., 66:632–636.PubMedCrossRefGoogle Scholar
  16. Kiss, G. B., Vincze, E., Kálmán, Z., Forrai, T., and Kondorosi, A., 1979, Genetic and biochemical analysis of mutants affected in nitrate reduction in Rhizobium meliloti, J. Gen. Microbiol., 113:105–118.Google Scholar
  17. Kleinhofs, A., Warner, R. L., Muehlbauer, F. J., and Nilan, R. A., 1978, Induction and selection of specific gene mutations in Hordeum and Pisum, Mutation Res., 51:29–35.CrossRefGoogle Scholar
  18. Kleinhofs, A., Kuo, T., and Warner, R. L., 1980, Characterization of nitrate reductase-deficient barley mutants, Molec. Gen. Genet., 177:421–425.CrossRefGoogle Scholar
  19. Kuo, T., Kleinhofs, A., Somers, D., and Warner, R. L., 1981, Antigenicity of nitrate reductase-deficient mutants in Hordeurn vulgare L., Molec. Gen. Genet., 181:20–23.CrossRefGoogle Scholar
  20. Kuo, T., Kleinhofs, A., and Warner, R. L., 1980, Purification and partial characterization of nitrate reductase from barley leaves, Plant Sci. Lett. 17:371–381.CrossRefGoogle Scholar
  21. Kuo, T. M., Somers, D. A., Kleinhofs, A., and Warner, R. L., 1982, NADH-nitrate reductase in barley leaves: Identification and animo acid composition of subunit protein, Biochim. Biophys. Acta, 708:75–81.CrossRefGoogle Scholar
  22. Lee, K.-Y., Pan, S.-S., Erickson, R., and Nason, A., 1974, Involvement of molybdenum and iron in the in vitro assembly of assimilatory nitrate reductase utilizing Neurospora mutant nit-1, J. Biol. Chem., 249:3941–3952.PubMedGoogle Scholar
  23. MacDonald, D. W., and Cove, D. J., 1974, Studies on temperature-sensitive mutants affecting the assimilatory nitrate reductase of Aspergillus nidulans, Eur. J. Biochem., 47:107–110.CrossRefGoogle Scholar
  24. Marton, L., Dung, T. M., Mendel, R. R., and Maliga, P., 1982a, Nitrate reductase deficient cell lines from haploid protoplast cultures of Nicotiana plumbaginifolia, Molec. Gen. Genet., 182:301–304.CrossRefGoogle Scholar
  25. Marton, L., Sidorov, V., Biasini, G., and Maliga, P., 1982b, Complementation in somatic hybrids indicates four types of nitrate reductase deficient lines in Nicotiana plumbaginifolia, Molec. Gen. Genet., 187:1–3.CrossRefGoogle Scholar
  26. Mendel, R.-R., and Müller, A. J., 1976, A common genetic determinant of xanthine dehydrogenase and nitrate reductase in Nicotiana tabacum, Biochem. Physiol. Pflanzen, 170: 538–541.Google Scholar
  27. Mendel, R. R., and Müller, A. J., 1979, Nitrate reductase-deficient mutant cell lines of Nicotiana tabacum. Further biochemical characterization, Molec. Gen. Genet., 177, 145–153.CrossRefGoogle Scholar
  28. Mendel, R. R., Alikulov, Z. A., Lvov, N. P., and Müller, A. J., 1981, Presence of the molybdenum-cofactor in nitrate reductase-deficient mutant cell lines of Nicotiana tabacum, Molec. Gen. Genet., 181:395–399.CrossRefGoogle Scholar
  29. Müller, A. J., and Gräfe, R., 1978, Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase, Molec. Gen. Genet., 161, 67–76.CrossRefGoogle Scholar
  30. Nason, A., Antoine, A. D., Ketchum, P. A., Frazier, W. A., III, and Lee, D. K., 1970, Formation of assimilatory nitrate reductase by in vitro inter-cistronic complementation in Neuro-spora crassa, Proc. Natl. Acad. Sci. USA, 65:137–144.PubMedCrossRefGoogle Scholar
  31. Nason, A., Lee, K.-Y., Pan, S.-S., Ketchum, P. A., Lamberti, A., and DeVries, J., 1971, in vitro formation of assimilatory reduced nicotinamide adenine dinucleotide phosphate: Nitrate reductase from a Neurospora mutant and a component of molybdenum-enzymes, Proc. Natl. Acad. Sci. USA, 68:3242–3246.PubMedCrossRefGoogle Scholar
  32. Notton, B. A., and Hewitt, E. J., 1979, Structure and properties of higher plant nitrate reductase, especially Spinacea olera-cea, in: “Nitrogen Assimilation of Plants,” E. J. Hewitt and C. V. Cutting, eds., Academic Press, New York.Google Scholar
  33. Oh, J. Y., Warner, R. L. and Kleinhofs, A., 1980, Effect of nitrate reductase deficiency upon growth, yield, and protein in barley, Crop Sci., 20:487–490.CrossRefGoogle Scholar
  34. Oostindier-Braaksma, F. J., and Feenstra, W. J., 1973, Isolation and characterization of chlorate-resistant mutants of Arabidop-sis thaliana, Mutation Res., 19:175–185.CrossRefGoogle Scholar
  35. Pan, S.-S., and Nason, A., 1978, Purification and characterization of homogeneous assimilatory reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase from Neurospora crassa, Biochim. Biophys. Acta, 523:297–313.PubMedGoogle Scholar
  36. Pateman, J. A., Cove, D. J., Rever, B. M., and Roberts, D. B., 1964, A common co-factor for nitrate reductase and xanthine dehydrogenase which also regulates the synthesis of nitrate reductase, Nature, 201:58–60.PubMedCrossRefGoogle Scholar
  37. Pienkos, P. T., Shah, V. K., and Brill, W. J., 1977, Molybdenum cofactors from molybdoenzymes and in vitro reconstitution of nitrogenase and nitrate reductase, Proc. Natl. Acad. Sci. USA, 74:5468–5474.PubMedCrossRefGoogle Scholar
  38. Shumny, V. K., and Tokarev, B. I., 1982, Genetic control of nitrate reductase activity in barley, Proc. IV Internat 1. Barley Symp., (in press).Google Scholar
  39. Small, I. S., and Wray, J. L., 1980, NADH nitrate reductase and related NADH cytochrome c reductase species in barley, Phytochemistry, 19:387–394.CrossRefGoogle Scholar
  40. Solomonson, L. P., Lorimer, G. H., Hall, R. L., Borchers, R., and Bailey, J. L., 1975, Reduced nicotinamide adenine dinucleo-tide-nitrate reductase of Chlorella vulgaris, J. Biol. Chem., 250:4120–4127.PubMedGoogle Scholar
  41. Somers, D. A., Kuo, T., Kleinhofs, A., and Warner, R. L., 1982a, Barley nitrate reductase contains a functional cytochrome b 557, Plant Sci. Lett., 24:261–265.CrossRefGoogle Scholar
  42. Somers, D. A., Kuo, T. M., Kleinhofs, A., and Warner, R. L., 1982b, Nitrate reductase-deficient mutants in barley. Immunoelectro-phoretic characterization, Plant Physiol., (in press).Google Scholar
  43. Strauss, A., Bucher, F., and King, P. J., 1981, Isolation of biochemical mutants using haploidjnesophyll protoplasts of Hyoscyamus muticus. I. A NO3 - non-utilizing clone, Planta, 153:75–80.CrossRefGoogle Scholar
  44. Tokarev, B. I., and Shumny, V. K., 1977, Detection of barley mutants with low level of nitrate reductase activity after the seed treatment with ethylmethanesulphonate, Genetika, Moskva, 13:2097–2103.Google Scholar
  45. Tomsett, A. B., and Garrett, R. H., 1980, The isolation and character ization of mutants defective in nitrate assimilation in Neurpspora crassa, Genetics, 95:649–660.PubMedGoogle Scholar
  46. Warner, R. L., and Kleinhofs, A., 1981, Nitrate utilization by nitrate reductase-deficient barley mutants, Plant Physiol., 67:740–743.PubMedCrossRefGoogle Scholar
  47. Warner, R. L., Kleinhofs, A., and Muehlbauer, F. J., 1982, Characterization of nitrate reductase-deficient mutants in pea, Crop Sci., 22:389–393.CrossRefGoogle Scholar
  48. Warner, R. L., Lin, C. J., and Kleinhofs, A., 1977, Nitrate reductase-deficient mutants in barley, Nature, 269:406–407.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • A. Kleinhofs
    • 1
  • J. Taylor
    • 1
  • T. M. Kuo
    • 1
  • D. A. Somers
    • 1
  • R. L. Warner
    • 1
  1. 1.Department of Agronomy and Soils and Program in Genetics and Cell BiologyWashington State UniversityPullmanUSA

Personalised recommendations