Selection of Tobacco Protoplast-Derived Cells for Resistance to Amino Acids and Regeneration of Resistant Plants

  • Jean-Pierre Bourgin
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 61)


Cell colonies derived from UV-mutagenized mesophyll protoplasts of haploid tobacco (Nicottana tabacum L.) were submitted to selection in a medium containing toxic concentrations of either L-valine or L-lysine plus L-threonine. Among the plants regenerated from colonies thus recovered in various experiments seven were resistant to valine (Valr mutants) and two to lysine plus threonine (LTr mutants). These markers were transmitted to progeny as mendelian characters, either single dominant (LTr mutants and Valr mutants of the first type), or digenic recessive (Valr mutants of the second type). The two types of valine resistance were further characterized by testing cells derived from mesophyll protoplasts from resistant plants for resistance to valine and to other amino acids. Cells of mutants of the first type had a low level of resistance to valine, whereas cells of mutants of the second type had a high level of resistance to valine and to other amino acids. According to the results of 14C-labelled amino acid uptake experiments the amino acid resistance of mutants of the second type could be accounted for by a generally reduced uptake of amino acids. Possible uses of valine resistance as a marker in plant cell genetics are discussed.


Plant Cell Culture Tobacco Cell Mesophyll Protoplast Amino Acid Uptake Mutant Clone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelberg, E.A., Mandel, M., and Chen, C.C.G., 1965, Optimal conditions for mutagenesis by N-methyl-N’-nitro-N-nitrosoguanidine in Escherichia coli K-12, Biochim. Biophys. Res. Comm., 18: 788–795.CrossRefGoogle Scholar
  2. Aviv, D. and Galun, E., 1977a, Isolation of tobacco protoplasts in the presence of isopropyl N-phenylcarbamate and their culture and regeneration into plants, Z. Pflanzenphysiol., 83: 267–273Google Scholar
  3. Aviv, D. and Galun, E., 1977b, An attempt at isolation of nutritional mutants from cultured tobacco protoplasts, Plant Sci. Lett. 8: 299–304.CrossRefGoogle Scholar
  4. Bayliss, M.W., 1980, Chromosomal variation in plant tissues in culture, in: “Perspectives in Plant Cell and Tissue Culture ”, I.K. Vasil ed., Int. Rev. Cytol. suppl. 11, Academic Press, New York: pp 113–144.Google Scholar
  5. Behrend, J. and Mateles, R.I., 1975, Nitrogen metabolism in plant cell suspension cultures. I. Effect of amino acids on growth, Plant Physiol., 56: 584–589.PubMedCrossRefGoogle Scholar
  6. Berlin, J. and Widholm, J.M., 1978, Amino acid uptake by amino acid analog resistant tobacco cell lines, Z. Naturforsch. 33c, 634–640Google Scholar
  7. Borstlap, A.C., 1972, Changes in the free amino acids of Sipivodela polyvhiza (L.) Schleiden during growth inhibition by L-valine, L-isoleucine, or L-leucine. A gas chromatographic study. Acta Bot. Neerl., 21: 404–416.Google Scholar
  8. Borstlap, A.C., 1981, Interactions between the branched-chain amino acids in the growth of Spirodela polyrhiza, Planta, 151: 314–319CrossRefGoogle Scholar
  9. Bourgin, J.P., 1976, Valine-induced inhibition of growth of haploid tobacco protoplasts and its reversal by isoleucine, Z. Naturforsch., 31c: 337–338.Google Scholar
  10. Bourgin, J.P., 1978, Valine-resistant plants from in vitro selected tobacco cells, Mol. Gen. Genet., 161: 225–230.CrossRefGoogle Scholar
  11. Bourgin, J.P., 1982, Isolement de mutants de tabac (Nicotiana tabacum) résistants à de fortes doses d’acides aminés à partir de cellules dérivées de protoplastes, Thèse, Université Pierre et Marie Curie, Paris: pp 1–122.Google Scholar
  12. Bourgin, J.P. and Nitsch, J.P., 1967, Obtention de Niaotiana haploïdes à partir d’étamines cultivées in vitro, Ann. Physiol, vég., 9: 377–382.Google Scholar
  13. Bourgin, J.P., Missonier, C., and Chupeau, Y., 1976, Culture de protoplastes de mésoplylle de Nicotiana sylvestris Spegazzini et Cornes haploide et diploide, C.R. Acad. Sci. Paris, sér. D., 282: 1853–1856.Google Scholar
  14. Bourgin, J.P. and Missonier, C., 1978, Culture de protoplastes de mesophylle de Nicotiana alata Link et Otto haploide. Z. Pflanzen-physiol., 87: 55–64.Google Scholar
  15. Bourgin, J.P., Chupeau, Y., and Missonier, C., 1979, Plant regeneration from mesophyll protoplasts of several Nicotiana species, Physiol. Plant., 45: 288–292.CrossRefGoogle Scholar
  16. Bourgin, J.P., Hommel, M.C., and Missonier, C., 1980, Expression of resistance to valine in protoplast-derived cells of tobacco mutants, in: “Plant Cell Cultures: Results and Perspectives”, F. Sala, B. Parisi, R. Cella and O. Ciferri eds., Elsevier/North Holland Biomedical Press, Amsterdam: pp 167–177.Google Scholar
  17. Bourgin, J.P., Chupeau M.C. and Missonier, C, 1982, Amino acid-resistant plants from tobacco cells cultured in vitro, in: “Regeneration of Plants from Cell and Tissue Culture and Genetic Variability”, E.D. Earle and Y. Demarly eds., Proeger Publishers, New York, in press.Google Scholar
  18. Bright, S.W.J., Miflin, B.J., and Rognes, S.E., 1982, Threonine accumulation in the seeds of a barley mutant with an altered aspartate kinase, Biochem. Genet., 20: 229–244.PubMedCrossRefGoogle Scholar
  19. Bryan, J.K., 1980, Synthesis of the aspartate family and branchedchain amino acids, in: “The Biochemistry of Plants, P.K. Stumpf and E.E. Conn eds., Vol. 5, Amino Acids and Derivatives, B.J. Miflin ed., Academic Press. New York: pp 403–452.Google Scholar
  20. Caboche, M., 1980, Nutritional requirements of protoplast-derived, haploid tobacco cells grown at low cell densities in liquid medium, Planta, 149: 7–18.CrossRefGoogle Scholar
  21. Caboche, M. and Muller, J.F., 1980, Use of a medium allowing low cell density growth for in vitro selection experiments: isolation of valine-resistant clones from nitrosoguanidine-mutagenized cells and gamma-irradiated tobacco plants, in: “Plant Cell Cultures: Results and Perspectives”, F. Sala, B. Parisi, R. Cella and O. Ciferri eds., Elsevier/North Holland Biomedical Press, Amsterdam: pp 133–138.Google Scholar
  22. Carlson, P.S., 1970, Induction and isolation of auxotrophic mutants in somatic cell cultures of Nicotiana tabacum, Science, 168: 487–489.PubMedCrossRefGoogle Scholar
  23. Carlson, P.S., 1973, The use of protoplasts for genetic research, Proc. Nat. Acad. Sci. U.S., 70; 598–602.CrossRefGoogle Scholar
  24. Chaleff, R. S. and Carlson, P.S., 1975, In vitro selection for mutants of higher plants, in: “Genetic manipulations with plant material”, L. Ledoux ed., Plenum Press, New York: pp 351–363.Google Scholar
  25. Chaleff, R. S. and Keil, R.L., 1981, Genetic and physiological variability among cultured cells and regenerated plants of Nicotiana tabacum, Mol. Gen. Genet. 181: 254–258.CrossRefGoogle Scholar
  26. Chupeau, Y. Bourgin J.P., Missonier, C, Dorion, N., and Morel, G., 1974, Préparation et culture de protoplastes de divers Nicotiana CR. Acad. Sc. Paris, Sér. D, 278: 1565–1568.Google Scholar
  27. Clausen, R.E. and Cameron, D.R., 1950, Inheritance in Nicotiana tabacum. XXIII. Duplicate factors for chlorophyll production, Genetics 35: 4–10.PubMedGoogle Scholar
  28. De Felice, M., Levinthal, M., Iaccarino, M., and Guardiola, J., 1979, Growth inhibition as a consequence of antagonism between related amino acids: effect of valine in Escherichia coli K-12, Microb. Rev., 43: 42–58.Google Scholar
  29. Dudits, D., Fejér, O., Hadlaczky, G., Koncz, C., Lázár, G.B., and Horvath, G., 1980, Intergeneric gene transfer mediated by plant protoplast fusion, Mol. Gen. Genet., 179: 283–288CrossRefGoogle Scholar
  30. Eapen, S., 1976, Effect of gamma- and ultraviolet-irradiation on survival and totipotency of haploid tobacco cells in culture, Protoplasma, 89: 149–155.PubMedCrossRefGoogle Scholar
  31. Eriksson, T. 1967, Effects of ultraviolet and X-ray radiation on in vitro cultivated cells of Haplopappus gracilis, Physiol. Plant., 20: 507–518.CrossRefGoogle Scholar
  32. Evans, D.A., 1979, Chromosome stability of plants regenerated from mesophyll protoplasts of Nicotiana species, Z. Pflanzen-physiol., 95: 459–463.Google Scholar
  33. Evans, D.A. and Gamborg, O.L., 1979, Effects of para-fluorophenyl-alanine on ploidy levels of cell suspension cultures of Datura innoxia, Environ. Exp. Bot., 19: 269–275.CrossRefGoogle Scholar
  34. Furner, I.J., King, J., and Gamborg, O.L., 1978, Plant regeneration from protoplasts isolated from a predominantly haploid suspension culture of Datura innoxia (Mil.), Plant Sci. Lett., 11: 169–176CrossRefGoogle Scholar
  35. Gebhardt, C., Schnebli, V., and King, P.J., 1981, Isolation of biochemical mutants using haploid mesophyll protoplasts of Hyoscya-mus muticus. II. Auxotrophic and temperature-sensitive clones, Planta, 153: 81–89.CrossRefGoogle Scholar
  36. Glimelius, K., Eriksson, T., Grafe, R., and Müller, A.J., 1978, Somatic hybridization of nitrate-reductase-deficient mutants of Nicotiana tabacum by protoplast fusion, Physiol. Plant., 44: 273–277.Google Scholar
  37. Green, C.E. and Phillips, R.L., 1976, Potential selection system for mutants with increased lysine, threonine, and methionine in cereal crops, Crop Sci., 14: 827–830.CrossRefGoogle Scholar
  38. Guardiola, J. and Iaccarino, M., 1971, Escherichia coli K-12 mutants altered in the transport of branched-chain amino acids, J. Bacteriol., 108., 1034–1044.PubMedGoogle Scholar
  39. Harms, C.T., Potrykus, I., and Widholm, J., 1981, Complementation and dominant expression of amino acid analogue resistance markers in somatic hybrid clones from Daucus carota after protoplast fusion, Z. Pflanzenphysiol., 101: 377–390.Google Scholar
  40. Heimer, Y.M. and Filner, P., 1970, Regulation of the nitrate assimilation pathway of cultured tobacco cells. II. Properties of a variant cell line, Biochim. Biophys. Acta, 215: 152–165PubMedCrossRefGoogle Scholar
  41. Hibberd, K.A., Walter, T., Green, C.E., and Gengenbach, B.G., 1980, Selection and characterization of a feedback-insensitive tissue culture of maize, Planta, 148: 183–187.CrossRefGoogle Scholar
  42. Horsch, R.B., 1979, Somatic plant cell genetics: a model system using cultured plant cells of Haplopappus gracilis, Thesis, University of California, Riverside: pp 1–91.Google Scholar
  43. Howland, G.P. and Hart, R.W., 1977, Radiation biology of cultured plant cells, in: “Applied and Fundamental Aspects of Plant Tissue Culture” J. Reinert and Y.P.S. Bajaj eds., Springer-Verlag, Berlin and New York: pp 731–735.Google Scholar
  44. Jinks, J.L., Caligari, P.D.S., and Ingram, N.R., 1981, Gene transfer in Nicotiana rustica using irradiated pollen, Nature, 291: 586–588.CrossRefGoogle Scholar
  45. Katz, E.R. and Sussman, M., 1972, Parasexual recombination in Dictyoste-lium discoideum: selection of stable diploid heterozygotes and stable haploid segregants. Proc. Natl. Acad. Sci. US., 69: 495–498.CrossRefGoogle Scholar
  46. Krens, F.A., Molendijk, L., Wullems, G.J., and Schilperoort, R.A., 1982, In vitro transformation of plant protoplasts with Ti-plasmid DNA, Nature, 296: 72–74.CrossRefGoogle Scholar
  47. Krumbiegel, G., 1979. Response of haploid and diploid protoplasts from Datura innoxia Mill, and Petunia hybrida L. to treatment with X-rays and a chemical mutagen. Environ. Exp. Bot., 19: 99–103.CrossRefGoogle Scholar
  48. Lâzâr, G.B., Dudits, D., and Sung, Z.R., 1981, Expression of cyclo-heximide resistance in carrot somatic hybrids and their segregants, Genetics, 98: 347–356.PubMedGoogle Scholar
  49. Lo Schiavo, F., Nuti Ronchi, V. and Terzi, M., 1980, Genetic effects of griseofulvin on plant cell cultures, Theor. Appl. Genet., 58: 43–47.CrossRefGoogle Scholar
  50. Lurquin, P.F. and Sheehy, R.E., 1982, Binding of large liposomes to plant protoplasts and delivery of encapsulated DNA, Plant Sci. Lett., 25: 133–146.CrossRefGoogle Scholar
  51. Magnien, E. and Devreux, M., 1980, A critical assessment of the protoplast system as a tool for radiosensitivity studies, in: “Plant Cell Cultures: Results and Perspectives”, F. Sala, B. Parisi, R. Cella, and O. Ciferri eds., Elsevier/North Holland Biomedical Press, Amsterdam: pp 121–126.Google Scholar
  52. Magnien, E., Dalschaert, X., and Devreux, M., 1980, Different radio-sensitivities of Nicotiana plumbaginifolia leaves and regenerating protoplasts, Plant Sci. lett., 19: 231–241.CrossRefGoogle Scholar
  53. Maisuryan, A.N., Khadeeva, N.V., and Pogosov, V.Z., 1982, Isolation of tobacco cell lines resistant to high concentrations of amino acids, Soviet Plant Physiol., 28: 561–564.Google Scholar
  54. Maliga, P., 1978, Resistance mutants and their use in genetic manipulation. in: “Frontiers of Plant Tissue Culture”, University of Calgary Press, Calgary, Alberta: pp 381–392.Google Scholar
  55. Maliga, P., 1980, Isolation, characterization, and utilization of mutant cell lines in higher plants, in: “Perspectives in Plant Cell and Tissue Culture”, I.K. Vasil ed., Int. Rev. Cytol. suppl. 11A, Academic Press, New York: pp 225–250.Google Scholar
  56. Maliga, P., Sz-Breznovits, A., and Márton, L., 1973, Streptomycin-resistant plants from callus culture of haploid tobacco, Nature, New Biol., 244: 29–30.Google Scholar
  57. Maliga, P., Sz-Breznovits, Á., Márton, L., and Joó, F., 1975, Non-mendelian streptomycin-resistant tobacco mutant with altered chloroplasts and mitochondria, Nature, 225: 401–402.CrossRefGoogle Scholar
  58. Maliga, P., Xuan, L.T., Dix, P.J., and Cséplö, A., 1980, Antibiotic resistance in Niootiana in: “Plant Cell Cultures: Results and Perspectives”, F. Sala, B. Parisi, R. Cella and O. Ciferri eds., Elsevier/North-Holland Biomedical Press, Amsterdam: pp 161–166.Google Scholar
  59. Maliga, P., Menczel, L., Sidorov, V., Mârton L., Cseplö, A., Medgyesy, P., Dung, T.M., Lâzâr, G., and Nagy, F. 1982, Cell culture mutants and their uses, in: “Plant Improvement and Somatic Cell Genetics, I.K. Vasil, K.J. Frey, and W.R. Scowcroft eds., Academỉc Press, New York: in press.Google Scholar
  60. Márton, L., Dung, T.M., Mendel, R.R., Maliga, P., 1982, Nitrate reductase deficient cell lines from haploid protoplast cultures of Niootiana plumbaginifolia, Mol. Gen. Genet., in press.Google Scholar
  61. Melchers, G., 1975, Genetik und Pflanzenzüchtung mit mikrobiologischen Methoden, Planta Medica, Suppl., Hippokrates Verlag, Stuttgart: pp 5–34.Google Scholar
  62. Meyer, Y. and Cooke, R., 1979, Time course of hormonal control of the first mitosis in tobacco mesophyll protoplasts cultivated in vitro, Planta, 147: 181–185.CrossRefGoogle Scholar
  63. Miflin, B.J., 1969, The inhibitory effects of various amino acids on the growth of barley seedlings, J. exp. Bot., 20: 810–819.CrossRefGoogle Scholar
  64. Miflin, B.J., 1973, Amino acid biosynthesis and its control in plants, in: “Biosynthesis and its control in plants”, B.V. Milborrow ed., Academic Press, New-York: pp 49–68.Google Scholar
  65. Müller, A.J. and Grafe, R., 1978, Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase. Mol. Gen. Genet., 161: 67–76.CrossRefGoogle Scholar
  66. Murashige, T. and Nakano, R., 1967, Chromosome complement as a determinant of the morphogenic potential of tobacco cells, Am. J. Bot., 54: 963–970.CrossRefGoogle Scholar
  67. Nagata, T. and Takebe, I., 1971, Plating of isolated tobacco mesophyll protoplasts on agar medium, Planta, 99: 12–20.CrossRefGoogle Scholar
  68. Nasim, A., Hannan, M.A., and Nestmann, E.R., 1981, Pure and mosaic clones — A reflection of differences in mechanisms of mutagenesis by different agents in Saccharomyces cerevisiae, Can. J. Genet. Cytol., 23: 73–79PubMedGoogle Scholar
  69. Negrutiu, I., 1981, Improved conditions for large-scale culture, mutagenesis, and selection of haploid protoplasts of Nicotiana plurribaginifolia Viviani, Z. Pflanzenphysiol., 104: 431–442Google Scholar
  70. Nitsch, J.P. and Nitsch, C., 1969, Haploid plants from pollen grains, Science, 163: 85–87.PubMedCrossRefGoogle Scholar
  71. Nitsch, J.P. and Ohyama, K., 1971, Obtention de plantes à partir de protoplastes haploïdes cultivés in vitro, C.R. Acad. Sc. Paris, sér. D, 273: 801–804.Google Scholar
  72. Ogura, H., 1976, The cytological chimeras in original regenerates from tobacco tissue cultures and in their offsprings, Jap. J. Genet., 51: 161–174.CrossRefGoogle Scholar
  73. Pandey, K.K., 1978. Gametic gene transfer in Nicotiana by means of irradiated pollen, Genetica, 49: 53–69.CrossRefGoogle Scholar
  74. Pandey, K.K., 1980, Further evidence for egg transformation in Nicotiana, Heredity, 45: 15–29.CrossRefGoogle Scholar
  75. Pental, D., Cooper-Bland, S., Harding, K., Cocking, E.C., and Müller, A.J. 1982, Cultural studies on nitrate reductase deficient Nicotiana tabacum mutant protoplasts, Z. Pflanzenphysiol., 105: 219–227.Google Scholar
  76. Pfahler, P.L. and Linskens, H.F., 1977, Ultraviolet irradiation of maize (Zea mays L.) pollen grains. II. Pollen genotype effects on plant characteristics, Theor. Appl. Genet., 50: 17–21.CrossRefGoogle Scholar
  77. Rashid, A. and Street H.A., 1974, Growth, embryogenic potential and stability of a haploid cell culture of Atropa belladonna L., Plant Sci. Lett., 2: 89–94.CrossRefGoogle Scholar
  78. Schieder, O., 1976, Isolation of mutants with altered pigments after irradiating haploid protoplasts from Datura innoxia Mill, with X-rays. Mol. Gen. Genet., 149: 251–254.CrossRefGoogle Scholar
  79. Shillito, R.D., Street, H.E., and Schilperoort, R.A., 1981, Model system studies of the use of 5-bromo-2′-deoxyuridine for selection of deficient mutants in plant cell suspension and protoplast cultures, Mutation Res., 81: 165–175.CrossRefGoogle Scholar
  80. Sidorov, V.A., Menczel, L., and Maliga, P., 1981, Isoleucine-requi-ring Nicotiana plant deficient in threonine deaminase, Nature, 294: 87–88.CrossRefGoogle Scholar
  81. Sidorov, V.A. and Maliga, P., 1982, Fusion-complementations analysis of auxotrophic and chlorophyll-deficient lines isolated in haploid Nicotiana plurribagini folia protoplast cultures, Theor. Appl. Genet., in press.Google Scholar
  82. Smith, H.H., 1968, Recent cytogenetic studies in the genus Nicotiana Adv. Genet., 14: 1–54.CrossRefGoogle Scholar
  83. Smith, S. and Street H.E., 1974, The decline of embryogénie potential as callus and suspension cultures of carrot (Daucus carota L.) are serially subcultured, Ann. Bot., 38: 223–241.Google Scholar
  84. Stadler, L.J. and Sprague, G.F., 1936. Genetic effects of ultraviolet radiation in maize, Proc. Natl. Acad. Sci.U.S., 22: 572–591.CrossRefGoogle Scholar
  85. Steinberg, R.A., 1959, Comparison of daylength and temperature responses in Nicotiana and its taxonomic sections, Am. J. Bot., 46: 261–268.CrossRefGoogle Scholar
  86. Stines, B.J. and Mann, T.J., 1960, Diploidization in Nicotiana tabacum. A study of the yellow burley character, J. Hered., 51: 222–227.Google Scholar
  87. Strauss, A., Bucher, F., and King, P.J., 1981, Isolation of biochemical mutants using haploid mesophyll protoplasts of Eyoscyamus mutious I. A NO3 - non-utilizing clone, Planta, 153: 75–80.CrossRefGoogle Scholar
  88. Sunderland, N., 1973, Nuclear cytology, in: “Plant Tissue and Cell Culture”, H.E. Street ed., Blackwell Scientific Publications, Oxford: pp 161–190.Google Scholar
  89. Sung, Z.R., 1976, Mutagenesis of cultured plant cells, Genetics, 84: 51–57.PubMedGoogle Scholar
  90. Thomas, E., King, P.J., and Potrykus, I., 1979, Improvement of crop plants via single cells in vitro, Z. Pflanzenzüchtg. 82: 1–30.Google Scholar
  91. Umbarger, H.E., 1969, Regulation of the biosynthesis of the branched-chain amino acids, Curr. Top. Cell Regul. 1: 57–76.Google Scholar
  92. Vanzulli, L., Magnien, E., and Olivi, L., 1980, Caryological stability of Datura innoxia calli analysed by cytophotometry for 22 hormonal combinations, Plant Sci. Lett., 17: 181–192.CrossRefGoogle Scholar
  93. White, D.W.R., and Vasil, I.K., 1979, Use of amino acid analogue-resistant cell lines for selection of Nicotiana sylvestris somatic cell hybrids, Theor. Appl. Genet., 55: 107–112.CrossRefGoogle Scholar
  94. Widholm, J., 1976, Selection and characterization of cultured carrot and tobacco cells resistant to lysine, methionine, and proline analogs, Can. J. Bot., 54: 1523–1529CrossRefGoogle Scholar
  95. Widholm, J., 1977a, Selection and characterization of amino acid analog resistant plant cell cultures, Crop Sci., 17: 597–600.CrossRefGoogle Scholar
  96. Widholm, J.M., 1977b, Selection and characterization of biochemical mutants, in: “Plant Tissue Culture and its Biotechnolo-gical Application”. W. Barz, E. Reinhard and M.H. Zenk eds., Springer-Verlag, Berlin and New York: pp 112–122.CrossRefGoogle Scholar
  97. Widholm, J.M., 1977c, Isolation of biochemical mutants of cultured plant cells, in: “Molecular genetic modification of eucaryotes” I. Rubenstein, R.L. Phillips, C.E. Green and R. Desnick eds. Academic Press, New York: pp 57–64.Google Scholar
  98. Withers, L.A. and Cocking, E.C., 1972, Fine structural studies on spontaneous and induced fusion of higher plant protoplasts, J. Cell Sci., 11: 59–75.PubMedGoogle Scholar
  99. Wright, L.A. and Murphy, T.M., 1978, Ultraviolet radiation-stimulated efflux of 86-rubidium from cultured tobacco cells, Plant Physiol., 61: 434–436.PubMedCrossRefGoogle Scholar
  100. Yeoman, M.M. and Street, H.E., 1973. General cytology of cultured cells, in: “Plant Tissue and Cell Culture”, H.E. Street ed., Blackwell Scientific Publications, Oxford: pp 121–160.Google Scholar
  101. Zelcer, A. and Galun, E., 1980, Culture of newly isolated tobacco protoplasts: cell division and precursor incorporation following a transient exposure to coumarin, Plant Sci. Lett., 18: 185–190.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Jean-Pierre Bourgin
    • 1
  1. 1.Laboratoire de Biologie CellulaireI.N.R.A.VersaillesFrance

Personalised recommendations