Plant Genetic Manipulations: Applications from Plant Somatic Cell Genetics

  • E. C. Cocking
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 61)


Currently there is much interest in the extent to which studies in plant somatic cell genetics will contribute to plant genetic manipulations and thereby to crop improvement in general. Aspects of plant genetic manipulations have recently been reviewed, and the special role of protoplasts in this respect have been highlighted2. In this survey some of these aspects will be further discussed in the light of more recent work mainly from our Genetic Manipulation Group here at Nottingham, but other work will be discussed where relevant.


Nitrate Reductase Somatic Hybridization Protoplast Fusion Mesophyll Protoplast Plant Protoplast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. C. Cocking, M. R. Davey, D. Pental, and J. B. Power, Aspects of plant genetic manipulation, Nature 293:265 (1981).CrossRefGoogle Scholar
  2. 2.
    E. C. Cocking, Somatic hybridization by the fusion of isolated protoplasts — an alternative to sex, in; “Plant Cell and Tissue Culture Principles and Applications”, W. R. Sharp et al., ed., Ohio State University Press, Columbus (1979).Google Scholar
  3. 3.
    E. C. Cocking, Parasexual reproduction in flowering plants, N.Z. Jl. Bot. 17:665 (1979).CrossRefGoogle Scholar
  4. 4.
    J. B. Power, S. E. Cummins, and E. C. Cocking, Fusion of isolated plant protoplasts, Nature 225:1016 (1970).PubMedCrossRefGoogle Scholar
  5. 5.
    E. C. Cocking, Selection and somatic hybridisation, in: “Frontiers of Plant Tissue Culture”, T. A. Thorpe, ed., Int. Assoc. Plant Tissue Culture (1978).Google Scholar
  6. 6.
    J. B. Power, S. F. Berry, J. V. Chapman, and E. C. Cocking, Somatic hybridisation of sexually incompatible Petunias: Petunia parodii, Petunia parviflora, Theor. Appl. Genet. 57:1 (1980).Google Scholar
  7. 7.
    E. C. Cocking, Plant cell hybrids and somatic hybrid plants, in: “Chromosomes Today, Vol.7”, George Allen and Unwin (1981).Google Scholar
  8. 8.
    Z-H. Xu, M. R. Davey, and E. C. Cocking, Isolation and sustained division of Phaseolus aureus (Mung Bean) root protoplasts, Z. für Pflanzenphvsiol. 104:289 (1981).Google Scholar
  9. 9.
    Z-H. Xu, M. R. Davey, and E. C. Cocking, Plant regeneration from root protoplasts of Brassica, Plant Sci. Letts. 24:117 (1982).CrossRefGoogle Scholar
  10. 10.
    D. Y. Lu, D. Pental, and E. C. Cocking, Plant regeneration from seedling cotyledon protoplasts, Z. für Pflanzenphysiol. 107:59 (1982).Google Scholar
  11. 11.
    A. Morgan and E. C. Cocking, Plant regeneration from protoplasts of Lycopersicon esculentum Mill., Z. für Pflanzenphysiol. 106:97 (1982).Google Scholar
  12. 12.
    G. Patnaik, E. C. Cocking, J. Hamill, and D. Pental, A simple procedure for the manual isolation and identification of plant heterokaryons, Plant Sci. Letts. 24:105 (1982).CrossRefGoogle Scholar
  13. 13.
    P. C. Bilkey and E. C. Cocking, Isolation and properties of plant microplasts: newly identified subcellular units capable of wall synthesis and division into separate micro cells, Eur. J. Cell Biol. 22:502 (1980).Google Scholar
  14. 14.
    H. Lörz, J. Paszhowski, C. Dierks-Ventling, and I. Potrykus, Isolation and characterisation of cytoplasts and mini-protoplasts derived from protoplasts of cultured cells, Physiol. Plant. 53:386 (1981).CrossRefGoogle Scholar
  15. 15.
    E. C. Cocking, Opportunities from the use of protoplasts, Phil. Trans. R. Soc. Lond. B, 292:557 (1981).CrossRefGoogle Scholar
  16. 16.
    U. Zimmermann and P. Scheurich, High frequency fusion of plant protoplasts by electric fields, Planta 156:26 (1981).CrossRefGoogle Scholar
  17. 17.
    D. Pental, S. Cooper-Bland, K. Harding, E. C. Cocking, and A. J. Müller, Cultural studies on nitrate reductase deficient Nicotiana tabacum mutant protoplasts, Z. für Pflanzenphysiol. 105:219 (1982).Google Scholar
  18. 18.
    J. Draper, M. R. Davey, J. P. Freeman, E. C. Cocking, and B. J. Cox, Ti-plasmid homologous sequences present in tissues from Agrobacterium plasmid-transformed Petunia protoplasts, Plant Cell Physiol. 23:92 (1982).Google Scholar
  19. 19.
    F. A. Krens, L. Molendijk, G. J. Wullems, and R. A. Schilperoort, In vitro transformation of plant protoplasts with Ti-plasmid DNA, Nature 298:72 (1982)CrossRefGoogle Scholar
  20. 20.
    S. Hasezawa, T. Nagata, and K. Syono, Transformation of Vinca protoplasts mediated by Agrobacterium spheroplasts, Mol. Gen. Genet. 182:206 (1981).CrossRefGoogle Scholar
  21. 21.
    D. Ursic, J. D. Kemp, and J. P. Helgeson, A new antibiotic with known resistance factors, G418, inhibits plant cells, Biochem. Biophys. Res. Comm. 101:1031 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    R. T. Schimke, R. J. Kaufman, F. W. Alt, and R. F. Kellems, Gene amplification and drug resistance in cultured murine cells, Science 202: 1051 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • E. C. Cocking
    • 1
  1. 1.Plant Genetic Manipulation Group, Department of BotanyUniversity of NottinghamNottinghamUK

Personalised recommendations