Construction of Cloning Vectors from the IncW Plasmid pSa and their use in Analysis of Crown Gall Tumor Formation

  • R. C. Tait
  • T. J. Close
  • M. Hagiya
  • R. C. Lundquist
  • C. I. Kado
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 61)


A set of four cloning vectors has been constructed from the wide host range IncW plasmid pSa. Although the vectors are transfer defective, three of them can be efficiently transferred into a wide variety of Gram-negative bacteria by a separate mobilizing plasmid. One of the vectors is a cosmid and can be used for cloning large DNA fragments. The vectors, which can be selected on the basis of kanamycin, spectinomycin, or chloramphenicol resistance, contain cloning sites for seven different restriction endonucleases. DNA fragments from the A. tumefaciens plasmid TiC58 have been cloned into these vectors, and used to complement avirulent TiC58::Tn5 mutants.


Cloning Vector Crown Gall Conjugal Transfer KpnI Site Insertional Inactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Bolivar, R. L. Rodriguez, P. J. Greene, M. C. Betlach, H. U. Heyneker, H. W. Boyer, J. H. Crosa, and S. Falkow, Gene 2:95–113 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    G. An, and J. D. Friesen, J. Bacteriol. 140:400–410 (1979).PubMedGoogle Scholar
  3. 3.
    R. W. West Jr., R. U. Neve, and R. L. Rodriguez, Gene 7:271–288 (1977).CrossRefGoogle Scholar
  4. 4.
    U. Enquist, and N. Sternberg, Methods Enz. 68:281–298 (1979).CrossRefGoogle Scholar
  5. 5.
    B. Hohn, Methods Enz. 68:299–309 (1979).CrossRefGoogle Scholar
  6. 6.
    J. Collins, Methods Enz. 68:309–326 (1979).CrossRefGoogle Scholar
  7. 7.
    G. Ditta, S. Stanfield, D. Corbin, and D. R. Helinski, Proc. Natl. Acad. Sci. (USA) 77:7347–7351 (1980).CrossRefGoogle Scholar
  8. 8.
    A. P. Gorai, F. Heffron, S. Falkow, R. W. Hedges, and N. Datta, Plasmid 2:485–492 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    R. C. Tait, R. C. Lundquist, and C. I. Kado, Mol. Gen. Genet. 186:10–15 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Holsters, B. Silva, F. Van Vliet, C. Genetello, M. DeBlock, P. Dhaese, A. DePicker, D. Inze, G. Engler, R. Villarroel, M. Van Montagu, and J. Schell, Plasmid 3:212–230 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    X. Soberon, U. Covarrubias, and F. Bolivar, Gene 9:287–305 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    R. C. Tait, T. J. Close, R. L. Rodriquez, and C. I. Kado, Gene, in press (1982).Google Scholar
  13. 13.
    R. Kolter, M. Inuzuka, D. Figurski, C. Thomas, D. Stalker, and D. R. Helinski, Cold Spring Harbor Symp. Quant. Biol. 43:91–97 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    P. Klapwijk, P. van Beelen, and R. Schilperoort, Mol. Gen. Genet. 173:171–175 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    H. J. Klee, M. P. Gordon, and E. W. Nester, J. Bact. 150: 327–331 (1982).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. C. Tait
    • 1
  • T. J. Close
    • 2
  • M. Hagiya
    • 1
  • R. C. Lundquist
    • 1
  • C. I. Kado
    • 1
  1. 1.University of CaliforniaDavisUSA
  2. 2.Davis Crown Gall Group, Departments of Plant Pathology and GeneticsUniversity of CaliforniaDavisUSA

Personalised recommendations