Skip to main content

Bacterial-Plant Gene Cloning Shuttle Vectors for Genetic Modification of Plants

  • Chapter
Genetic Engineering in Eukaryotes

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 61))

Abstract

Directed genetic transformation of plant cells is one of the fundamental requirements for tailoring plants’ cells to harbor desirable characteristics. This requirement can be achieved by the development of systems for the delivery and integration of foreign genes into the plant genome. Two potential gene delivery systems have been the focus of considerable attention: the Ti plasmid of Agrobacterium tumefaciens and the DNA plant virion cauliflower mosaic virus (CaMV)1–8. Although these are the most thoroughly characterized systems, reports on the successful application of these vectors in the manipulation of the plant genome have been premature. The inherent limitations of these vectors have been previously pointed out3,4,6,7, yet the design of a cloning vector capable of replication in bacteria and plants continues to center around the Ti plasmid and DNA plant viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. J. Hooykaas, R. A. Schilperoort, and A. Rorsch, Genetic Engineering Vol, 1, p. 151–179, J. K. Setlow and A. Hollaender eds., Plenum Press, New York-London (1973).

    Google Scholar 

  2. C. I. Kado, Genetic Engineering Vol. 1, p. 223–239 (1979).

    Article  CAS  Google Scholar 

  3. C. I. Kado, and A. Kleinhofs, Intl. Rev. Cytology, Suppl. IIB, 47–80, I. K. Vasil, ed., Academic Press, New York (1980).

    Google Scholar 

  4. M.-D. Chilton, Genetic Engineering of Osmoregulation p. 23–31, D. W. Rains, R. C. Valentine and A. Hollaender, eds., Plenum Press, New York-London (1980).

    Chapter  Google Scholar 

  5. R. B. Meagher, and T. D. McKnight, Genome Organization and Expression in Plants, C. J. Leaver, ed., p. 63–75. Plenum Press, New York-London (1980).

    Google Scholar 

  6. S. H. Howell, Ann. Rev. Plant Physiol. 33:609–650 (1982).

    Article  CAS  Google Scholar 

  7. T. Holn, K. Richards, and G. Lebeurier, Curr. Topics Microbiol. Immunol. 96:193–236 (1982).

    Article  Google Scholar 

  8. J. Schell, and M. Van Montagu, Transfer of cell constituents into Eukaryotic cells, J. E. Cells, ed., p. 325–346. Plenum Press, New York-London (1980).

    Google Scholar 

  9. C. I. Kado, R. C. Tait, R. C. Lundquist, M. Hagiya, D. Zaitlin, and D. Gallie, Proc. Fourth Intl. Symp. Genetics Indust. Microorg., Kyoto, Japan (In Press) (1982).

    Google Scholar 

  10. R. C. Tait, T. J. Close, R. C. Lundquist, M. Hagiya, R. L. Rodriguez, and C. I. Kado, Proc. Natl. Acad. Sci. USA (submitted) (1982).

    Google Scholar 

  11. R. C. Tait, R. C. Lundquist, and C. I. Kado, Molec. Gen. Genet. 186:10–15 (1982).

    Article  PubMed  CAS  Google Scholar 

  12. D. T. Stinchcomb, M. Thomas, J. Kelley, E. Selker, and R. W. Davis, Proc. Natl. Acad. Sci. USA 77:4559–4563 (1980).

    Article  PubMed  CAS  Google Scholar 

  13. P. F. Lurquin, and C. I. Kado, Molec. Gen. Genet. 154:113–121 (1977).

    Article  PubMed  CAS  Google Scholar 

  14. S. M. Fernandez, P. F. Lurquin, and C. I. Kado, FEBS Letters 87:277–282 (1978).

    Article  PubMed  CAS  Google Scholar 

  15. J. A. Lippincott, and B. B. Lippincott, Ann. Rev. Microbiol. 29:377–405 (1975).

    Article  CAS  Google Scholar 

  16. J.-P. Hernalsteens, F. Van Vliet, M. DeBeuckeleer, A. Depicker, G. Engler, M. Lemmers, M. Holsters, M. VanMontagu, and J. Schell, Nature 287:654–656 (1980).

    Article  CAS  Google Scholar 

  17. D. J. Garfinkel, R. B. Simpson, L. W. Ream, F. F. White, M. P. Gordon, and E. W. Nester, Cell 27:143–153 (1981).

    Article  PubMed  CAS  Google Scholar 

  18. J. Schell, M. Van Montagu, M. Holsters, J. P. Hernalsteens, H. DeGreve, J. Leemans, L. Willmitzer, L. Otten, J. Schroder, and G. Schroder, Fourth Int. Symp. Genetic Industr. Microorg. Kyoto, Japan (Abstract) (1982).

    Google Scholar 

  19. K. Strahl, D. T. Stinchcomb, S. Scherer, and R. W. Davis. Proc. Natl. Acad. Sci. USA 76:1035–1039 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Kado, C.I., Tait, R.C. (1983). Bacterial-Plant Gene Cloning Shuttle Vectors for Genetic Modification of Plants. In: Lurquin, P.F., Kleinhofs, A. (eds) Genetic Engineering in Eukaryotes. NATO Advanced Science Institutes Series, vol 61. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4493-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4493-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4495-7

  • Online ISBN: 978-1-4684-4493-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics