On the Crystalline, Liquid, Glassy, Gaseous, and Superfluid States of Simple Substances

  • R. M. J. Cotterill
Part of the NATO Advanced Science Institutes Series book series (volume 92)


The appearance of this communication, which does not specifically deal with fast ionic conduction, in a volume devoted to that subject, obviously requires prefatory comment. Its inclusion seems justified on at least two counts. Explanations of the superionic conduction phenomenon are frequently couched in terms of the melting of a sublattice. An understanding of the transitions between the fundamental forms of simple matter might thus be a prerequisite for the proper appreciation of the superionic state. Moreover, it has recently been found that the glassy versions of certain substances display superionic conduction [1]. seems unlikely that a satisfactory explanation of this intriguing fact will actually precede the emergence of an acceptable theory of the glassy state itself.


Glassy State Pair Distribution Function Simple Substance Hard Sphere Model Shockley Partial Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Lazzari, B. Scrosati, and C.A. Vincent, J. Amer. Ceramic Soc. 61, 451 (1978).CrossRefGoogle Scholar
  2. [2]
    P.W. Anderson, in Proc. Les Houches Conf. on Ill-Condensed Matter, R. Balian ( North Holland, Amsterdam, 1979 ) p. 162.Google Scholar
  3. [3]
    N. F. Mott and R.W. Gurney, Trans. Faraday Soc. 35, 364 (1939).CrossRefGoogle Scholar
  4. [4]
    W. L. Bragg, in Proc. Symp. on Internal Stresses ( Institute of Metals, London, 1947 ) p. 221.Google Scholar
  5. [5]
    W. Shockley, in l’Etat Solide (Inst. Inter, de Physique Solvay, Brussels, 1952 ) p. 431.Google Scholar
  6. [6]
    A. Ookawa, J. Phys. Soc. Japan 15, 2191 (1960). -ADSCrossRefGoogle Scholar
  7. [7]
    S. Mizushima, J. Phys. Soc. Japan 15, 70 (1960).CrossRefGoogle Scholar
  8. [8]
    D. Kuhlmann-Wilsdorf, Phys. Rev. A 140, 1599 (1965).ADSGoogle Scholar
  9. [9]
    R. M. J. Cotterill, in Ordering in Strongly Fluctuating Condensed Matter Systems, ed. Tormod Riste (Plenum Publishing Corporation, 1980 ) p. 261.Google Scholar
  10. [10]
    R. M. J. Cotterill and L. B. Pedersen, Solid State Comm. 10, 439 (1972).ADSCrossRefGoogle Scholar
  11. [11]
    J. M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).ADSCrossRefGoogle Scholar
  12. [12]
    R. M. J. Cotterill, W. Damgaard Kristensen, and E. J. Jensen, Phil. Mag. 30, 245 (1974).ADSCrossRefGoogle Scholar
  13. [13]
    M. Born, J. Chem. Phys. 7, 591 (1939).ADSCrossRefGoogle Scholar
  14. [14]
    R. M. J. Cotterill and J. U. Madsen, Nature (in press).Google Scholar
  15. [15]
    J.P. Hansen and L. Verlet, Phys. Rev. 184, 151 (1969).ADSCrossRefGoogle Scholar
  16. [16]
    D. Turnbull, in Liquids: Structure, Properties, Solid Interactions, ed. T. J. Hughel (Elsevier, Amsterdam, 1965 ) p. 6.Google Scholar
  17. [17]
    M. H. Cohen and G.S. Grest, Phys. Rev. B 20, 1077 (1979).ADSCrossRefGoogle Scholar
  18. [18]
    R. M. J. Cotterill, Physica Scripta 18, 37 (1978).ADSCrossRefGoogle Scholar
  19. [19]
    S. M. Stishov, I. N. Makarenko, V.A. Ivanov, and A. M. Nikolaenko, Phys. Lett. 45A, 18 (1973).CrossRefGoogle Scholar
  20. [20]
    R. M. J. Cotterill, J. Cryst. Growth 48, 582 (1980).ADSCrossRefGoogle Scholar
  21. [21]
    R. M. J, Cotterill and J. L. Talion, Discussions of the Faraday Society No. 69 (in press).Google Scholar
  22. [22]
    P.W. Anderson, B.I. Halperin, and C. M. Varma, Phil. Mag. 25, 1 (1972).ADSMATHCrossRefGoogle Scholar
  23. [23]
    T. E. Faber, An Introduction to the Theory of Liquid Metals (Cambridge University Press, 1972 ) p. 94.Google Scholar
  24. [24]
    R.A. Guyer, Solid State Physics 23, 413 (1969).CrossRefGoogle Scholar
  25. [25]
    E.P. Gross, Phys. Rev. Lett. 4, 57 (1960).CrossRefGoogle Scholar
  26. [26]
    A.W. Overhauser, Phys. Rev. Lett. 4, 415 (1960).MATHCrossRefGoogle Scholar
  27. [27]
    W. Gordon, C. Shaw, and J. Daunt, J. Phys. Chem. Solids 5, 117 (1958).ADSCrossRefGoogle Scholar
  28. [28]
    D.G. Henshaw, Phys. Rev. 119, 9 (1960).ADSCrossRefGoogle Scholar
  29. [29]
    J.A. Krumhansl and J.R. Schrieffer, Phys. Rev. B 11, 3535 (1975).ADSCrossRefGoogle Scholar
  30. [30]
    S. Nakajima, S. Kurihara, and K. Tohdoh, J. Low Temp. Phys. 39, 465 (1980).ADSCrossRefGoogle Scholar
  31. [31]
    V.F. Weisskopf, Trans. New York Acad. Sci. 38, 202 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. M. J. Cotterill
    • 1
  1. 1.Department of Structural Properties of MaterialsThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations