Thermodynamic and Transport Properties of Superionic Conductors and Electrode Materials

  • J. H. Harding
Part of the NATO Advanced Science Institutes Series book series (volume 92)


The terms “superionic conductor” and “solid electrolyte” are used to denote those solids that exhibit anomalously large (~ 1 (ohm-cm)−1) ionic conductivities. Such a definition is rather too wide since most solids have high ionic conductivities provided the temperature is high enough so it is common to suggest further features of this class of material. These include
  1. (i)

    weak temperature dependence of the ionic conductivity

  2. (ii)

    low activation energies (few tenths of an eV)

  3. (iii)

    anomalously low prefactors in the Arrhenius expression.

Exceptions can be found to all of these criteria; for example stabilised zirconia has an activation energy of about 1 eV and yet is counted a superionic material in most of the literature.


Electrode Material Defect Concentration Molecular Dynamic Calculation SUPERIONIC Conductor Jump Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Broers G.H. (1958) PhD Thesis (Amsterdam).Google Scholar
  2. Bottelberghs P.H. (1976) PhD dissertation (Utrecht).Google Scholar
  3. Carr V.M., Chadwick A.V., Saghafian R. (1978) J.Phys. C1l L637.ADSGoogle Scholar
  4. Catlow C.R.A., Norgett M.J. (1973) J.Phys. C6 1325.ADSGoogle Scholar
  5. Catlow C.R.A., Diller K.M., Norgett M.J. (1977) J.Phys. C10 1395.ADSGoogle Scholar
  6. Catlow C.R.A. (1980) Comments Solid State Phys. 9 157.Google Scholar
  7. Derrington C.E., Navrotsky A., O’Keefe M. (1976) So1.St.Comm. 18 47.CrossRefGoogle Scholar
  8. Dworkin A.S., Bredig M.A. (1968), J.Phys.Chem. 72 1277.CrossRefGoogle Scholar
  9. Evarestov R.A. (1975) Phys.Stat.Sol. (b) 72 569ADSCrossRefGoogle Scholar
  10. Figueroa D.R., Chadwick A.V., Strange J.H. (1978) J.Phys. C1l 55.ADSGoogle Scholar
  11. Gillan M.J., Dixon M. (1980) J.Phys. C13 1901, 1919.ADSGoogle Scholar
  12. Harding J.H., Stoneham A.M. (1981) Phil.Mag. in press.Google Scholar
  13. LeClaire A.D. (1970) in Physical Chemistry (an advanced treatise) ed. W. Jost Publ. Academic Press, New York.Google Scholar
  14. Lidiard A.B., Catlow C.R.A., Cornish J.,Jacobs P.W.M. (1980) to be published.Google Scholar
  15. McOmber J.I., Topiol S., Ratner M.A., Shriver D.F. (1979) J.Phys. Chem. Solids 41 447.CrossRefGoogle Scholar
  16. Möbus H.H., Witzmann, H., Harting R. (1964) Z.Phys.Chem. 40 227.Google Scholar
  17. Murch G.E. (1979) Phil.Mag. A41 701.Google Scholar
  18. Murch G.E., Thorn R.J. (1979) Phil.Mag. A39 673.CrossRefGoogle Scholar
  19. Nölting J. (1980) to be published, (quoted in C.R.A. Catlow (1980) Comments Solid State Phys. 9 157 ).Google Scholar
  20. Vineyard G.H. (1957) J.Phys.Chem.Sol. 3. 121.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. H. Harding
    • 1
  1. 1.Theoretical Physics DivisionAERE HarwellDidcot, OxonUK

Personalised recommendations