# Introduction to Monte Carlo Simulation Techniques

Part of the NATO Advanced Science Institutes Series book series (volume 92)

## Abstract

Starting from the assumption that matter, for our purposes, consists of interacting particles obeying classical mechanics, and using the postulates of statistical mechanics, one can model any specific material as a system of particles provided one knows what the interactions between the particles are. However, whatever interactions are chosen the integrals that it is necessary to solve are formidable. For example, the average potential energy is
$$<U>=\int{U({{{\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle-}}}{r}}}^{N}})}p({{\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle-}}}{r}}^{N}})d{{\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle-}}}{r}}^{N}},$$
(1)
where the probability density for a configuration of N distinguishable particles, $${{\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle-}}}{r}}^{N}}\equiv({{\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle-}}}{r}}_{1}},{{\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle-}}}{r}}_{2}},....,{{\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle-}}}{r}}_{N}})$$, r2,...., rN) is
$${{Q}_{N}}=\int{exp\left[ -U({{{\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle-}}}{r}}}^{N}})/kT\right]d}{{\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle-}}}{r}}^{N}}.$$
(2)
where the configurational integral QN is
$${{Q}_{N}}=\int{exp\left[ -U({{{\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle-}}}{r}}}^{N}})/kT\right]}d{{\underset{\raise0.3em\hbox{\smash{\scriptscriptstyle-}}}{r}}^{N}}.$$
(3)

## Keywords

Random Walk Configuration Space Pair Potential Monte Carlo Calculation Monte CARLO Simulation Technique
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
J. M. Hammersley and D. C. Handscomb, “Monte Carlo Methods”, Methuen, London (1964).
2. 2.
J. P. Valleau and G. M. Torrie, A Guide to Monte Carlo for Statistical Mechanics: 2. Byways, in: “Modern Theoretical Chemistry, Vol. 5A, Equilibrium Statistical Mechanics of Fluids”, B. J. Berne, ed., Plenum, New York (1977).Google Scholar
3. 3.
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21: 1087 (1953).
4. 4.
W. W. Wood, Monte Carlo Studies of Simple Liquid Models, in: “The Physics of Simple Liquids”, H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, eds., North-Holland, Amsterdam (1974).Google Scholar
5. 5.
J. P. Valleau and S. G. Whittington, A Guide to Monte Carlo for Statistical Mechanics: 1. Highways, in: “Modern Theoretical Chemistry, Vol. 5A, Equilibrium Statistical Mechanics of Fluids”, B. J. Berne, ed., Plenum, New York (1977).Google Scholar
6. 6.
C. Zannoni, Computer Simulations, in: “The Molecular Physics of Liquid Crystals”, G. R. Luckhurst and G. W. Gray, eds., Academic Press, London (1979).Google Scholar
7. 7.
D. M. Heyes, M. Barber and J. H. R. Clarke, J. C. S. Faraday II 73:1485 (1977); 75:1240, 1469 and 1484 (1979).Google Scholar
8. 8.
W. Schommers, Phys.Rev. A16: 327 (1977).
9. 9.
M. J. L. Sangster and M. Dixon, Adv.Phys. 25: 247 (1976).
10. 10.
G. N. Patey, G. M. Torrie, and J. P. Valleau, J.Chem.Phys. 71: 96 (1979).
11. 11.
D. J. Adams, Chem. Phys. Lett., 62:329 (1979); in: “The Problem of Long-Range Forces in the Computer Simulation of Condensed Media”, D. Ceperely, ed., NRCC, Lawrence Berkeley Laboratory (1980).Google Scholar
12. 12.
I. R. McDonald and K. Singer, Disc. Faraday Soc. 43: 40 (1967).
13. 13.
D. J. Adams and I. R. McDonald, Molec. Phys. 34: 287 (1977).
14. 14.
D. R. Squire and W. G. Hoover, J. Chem. Phys. 50: 701 (1969).
15. 15.
16. 16.
C. Pangali, M. Rao, and B. J. Berne, Chem. Phys. Lett. 55: 413 (1978).
17. 17.
P. J. Rossky, J. D. Doll, and H. L. Friedman, J. Chem. Phys. 69: 4628 (1978).
18. 18.
M. Rao, C. Pangali, and B. J. Berne, Molec. Phys. 37: 1773 (1979).
19. 19.
M. Rao and B. J. Berne, J. Chem. Phys. 71: 129 (1979).
20. 20.
I. R. McDonald, Molec. Phys. 23: 41 (1972).
21. 21.
D. J. Adams and I. R. McDonald, J. Phys. C 7:2761 (1974); 8: 2198 (1975).Google Scholar
22. 22.
D. J. Adams and I. R. McDonald, Physica 79 B: 159 (1975).Google Scholar
23. 23.
G. É. Norman and V. S. Filinov, High Temp. USSR 7: 216 (1969).Google Scholar
24. 24.
D. J. Adams, Molec. Phys. 28: 1241 (1974).
25. 25.
L. A. Rowley, D. Nicholson, and N. G. Parsonage, J. Comput. Phys. 17: 401 (1975).
26. 26.
D. J. Adams, Molec. Phys. 32, 647 (1976); 37, 211 (1979).
27. 27.
J. E. Lane and T. H. Spurling, Aust. J. Chem. 29: 2103 (1976);
28. 31:.
29. 28.
L. A. Rowley, D. Nicholson, and N. G. Parsonage, Mol. Phys.Google Scholar
30. 32:.
and 389 (1976); J. Comput. Phys. 26:66 (1978).Google Scholar
31. 29.
J. E. Lane, T. H. Spurling, B. C. Freasier, J. W. Perram, and E. R. Smith, Phys. Rev. A20: 2147 (1979).
32. 30.
W. van Megen and I. K. Snook, Molec. Phys. 39: 1043 (1980).
33. 31.
G. M. Torrie and J. P. Valleau, Chem. Phys. Lett. 65: 343 (1979).
34. 32.
J. A. Barker and D. Henderson, Rev. Mod. Phys. 48: 587 (1976).
35. 33.
J. N. Cape and L. V. Woodcock, J. Chem. Phys. 72: 976 (1980).
36. 34.
F. F. Abraham, Phys. Rev. Lett. 44: 463 (1980).
37. 35.
Stochastic Molecular Dynamics“, D. Ceperley and J. Tully, eds., NRCC, Lawrence Berkeley Laboratory (1979).Google Scholar
38. 36.
A. J. Stace, Molec. Phys. 38: 155 (1979).
39. 37.
G. E. Murch and R. J. Thorn, Phil.Mag. 35:493; 36:517 and 529 (1977).Google Scholar