Advertisement

Laser Doppler Velocimetry in a Biological Context

  • J. C. Earnshaw
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 59)

Abstract

Since the pioneering experiments of Yeh and Cummins1 laser Doppler velocimetry (LDV) has developed into a mature subject which has been well reviewed.2 No attempt will be made to cover this field fully but attention will be focussed upon the particular problems which are posed by biological flows. LDV has largely been developed in the context of fast, turbulent flows of gases which are tenuously populated by small particles from a more or less homogeneous population. In the biological situation however, we are likely to be confronted with slow laminar flows of dense fluids incorporating particles ranging from macromolecules to organelles. Each difference leads to differences in the implementation of LDV or the interpretation of the observed data.

Keywords

Correlation Function Transit Time Multiple Scattering Flow Profile Reference Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Yeh and H.Z. Cummins, Appl. Phys. Letts. 4: 176 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    E.R. Pike in Photon Correlation Spectroscopy and Velocimetry edited by H.Z. Cummins and E.R. Pike ( New York, Plenum, 1977 ). p 246.Google Scholar
  3. 3.
    J.B. Abbis, T.W. Chubb and E.R. Pike, Optics and Laser Tech. 6: 249 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    H. Kogelnik and T. Li, Appl. Optics, 5: 1550 (1966).ADSCrossRefGoogle Scholar
  5. 5.
    R. Foord, A.F. Harvey, R. Jones, E.R. Pike and J.M. Vaughan, J. Phys. D, 7: L36 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    J. Oldengarm, A.H. van Krieken and H.W. van der Klooster, J. Phys. E, 8: 203 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    P.H.Y. Lee, Appl. Phys. Letts. 25: 737 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    T. Yoshimura, Y. Syoji, N. Wakabayashi and N. Suzuki, J. Phys. E 11: 777 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    R.B. Dyott, IEE J. Microwaves, Optics and Acoustics, 2: 13 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    H.Z. Cummins, this volume.Google Scholar
  11. 11.
    R.V. Edwards, J.A. Angus, M.J. French and J.W. Dunning, J. Appl. Phys. 42: 837 (1971).ADSCrossRefGoogle Scholar
  12. 12.
    H.C. van de Hulst and J.J.M. Reesinck, Astrophys. J. 106: 121 (1947).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    D.A. Jackson and D.S. Bedborough, J. Phys. D. 11: L135 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    R.V.Mustacich and B.R.Ware, Biophys. J. 16: 373 (1976).CrossRefGoogle Scholar
  15. 15.
    K.H. Langley, R.W. Piddington, D. Ross and D.B. Sattelle, Biochim. Biophys. Acta, 444: 893 (1976).CrossRefGoogle Scholar
  16. 16.
    D.K. Kreid, Applied Optics, 13: 1872 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    D.K. McLaughlin and W.G. Tiederman, Phys. Fluids 16: 2082 (1971).ADSCrossRefGoogle Scholar
  18. 18.
    L. Shemer and S. Einav, Rev. Sci. Instrum., 5U: 8 /9 (1979).Google Scholar
  19. 19.
    H. Mishira, T. Ushizaka and T. Asakura, Optics and Laser Tech. 8: 121 (1976).ADSCrossRefGoogle Scholar
  20. 20.
    T. Cochrane and J.C. Earnshaw, J. Phys. D. 11: 1509 (1978).ADSCrossRefGoogle Scholar
  21. 21.
    S. Einav, H.H. Berman, R.L. Fuhro, P.R. DiGiovanni, S. Fine and J.D. Fridman, Biorheology, 12: 207 (1975).Google Scholar
  22. 22.
    T. Cochrane, J.C. Earnshaw and A.H.G. Love, Med. & Biol. Eng. and Computing, 19: 589 (1981).CrossRefGoogle Scholar
  23. 23.
    T. Tanaka and G.B. Benedek, Applied Optics, 14: 189 (1975).ADSGoogle Scholar
  24. 24.
    R. Bonner and R. Nossal, Applied Optics 20: 2097 (1981).ADSCrossRefGoogle Scholar
  25. 25.
    C.M. Sorensen, R.C. Mockler and W.J. O’Sullivan, Phys. Rev. A 17: 2030 (1978).ADSCrossRefGoogle Scholar
  26. 26.
    B.J. Berne and R. Nossal, Biophys. J. 14: 865 (1974).CrossRefGoogle Scholar
  27. 27.
    M. Kwiatkowska, Protoplasma, 75: 345 (1972).CrossRefGoogle Scholar
  28. 28.
    A.E. Smart and W.T. Mayo, Jr, in ‘Proceedings from the 4th International Conference on Photon Correlation Techniques in Fluid Mechanics’ ed. W.T. Mayo Jr and A.E. Smart (Stanford, Stanford University) pII. 1 (1980).Google Scholar
  29. 29.
    T. Mullin and C.A. Greated, J. Phys. E, 11: 643 (1978).ADSCrossRefGoogle Scholar
  30. 30.
    R.V. Mustacich and B.R. Ware, Rev. Sci. Instrum. 47: 108 (1976).ADSCrossRefGoogle Scholar
  31. 31.
    S.A. Newton, N.C. Ford Jr, K.H. Langley and D.B. Sattelle, Biochim. Biophys. Acta, 496: 212 (1977).CrossRefGoogle Scholar
  32. 32.
    J.B. Cole and M.D. Swords, J. Phys. D. 14: 1731 (1981).ADSCrossRefGoogle Scholar
  33. 33.
    D. Koppel, this volume.Google Scholar
  34. 34.
    D. Magde, W.W. Webb and E.L. Elson, Biopolymers, 17: 361 (1978).CrossRefGoogle Scholar
  35. 35.
    B. Chu, this volume.Google Scholar
  36. 36.
    J.B. Abbiss, Physica Scripta, 19: 388 (1979).ADSCrossRefGoogle Scholar
  37. 37.
    P.R. Sharpe, Physica Scripta, 19: 411 (1979).ADSCrossRefGoogle Scholar
  38. 38.
    J.G. McWhirter, Optica Acta, 28: 1453 (1981).ADSCrossRefGoogle Scholar
  39. 39.
    J.G. McWhirter and E.R. Pike, J. Phys. A, 11: 1729 (1978).MathSciNetADSMATHCrossRefGoogle Scholar
  40. 40.
    J.G. McWhirter and E.R. Pike, Physica Scripta, 19: 417 (1979).ADSCrossRefGoogle Scholar
  41. 41.
    A.R. Davies, T. Cochrane and 0.M. Al-Faour, Optica Acta, 27: 107 (1980).ADSCrossRefGoogle Scholar
  42. 42.
    P.P. Stone, Physica Scripta, 19: 402 (1979).ADSCrossRefGoogle Scholar
  43. 43.
    S.W. Provencher, Makromol. Chem. 180: 201 (1979).CrossRefGoogle Scholar
  44. 44.
    B.R. Ware, this volume.Google Scholar
  45. 45.
    G.V.R. Born, A. MelLing and J.H. Whitelaw, Biorheology, 15: 163 (1978).Google Scholar
  46. 46.
    G.T. Feke and C.E. Riva, J. Opt. Soc. Am. 68: 526 (1978).ADSCrossRefGoogle Scholar
  47. 47.
    M.D. Stern, Nature, 254: 56 (1975).ADSCrossRefGoogle Scholar
  48. 48.
    G.E. Nilsson, T. Tenland and P.A. Oberg, IEEE Trans. Biomed. Eng, BME27: 12, 597 (1980).CrossRefGoogle Scholar
  49. 49.
    J.C. Earnshaw and M.W. Steer, Pestic. Sci. 10: 358 (1979).CrossRefGoogle Scholar
  50. 50.
    R.V. Mustacich and B.R. Ware, Phys. Rev. Lett. 33: 617 (1974).ADSCrossRefGoogle Scholar
  51. 51.
    R.V. Mustacich and B.R. Ware, Biophys. J. 17: 229 (1977).CrossRefGoogle Scholar
  52. 52.
    D.B. Sattelle, D.J. Green and K.H. Langley, Physica Scripta, 19: 471 (1979).ADSCrossRefGoogle Scholar
  53. 53.
    D.B. Sattelle and P.B. Buchan,J. Cell. Sci. 22: 633 (1976).Google Scholar
  54. 54.
    R.V. Mustacich and B.R. Ware, Protoplasma, 91: 351 (1977).CrossRefGoogle Scholar
  55. 55.
    J.C. Earnshaw in ‘Photon Correlation Spectroscopy and Velocimetry’ edited by H.Z. Cummins and E.R. Pike ( New York, Plenum, 1977 ) p461.Google Scholar
  56. 56.
    J. Picton, unpublished observations.Google Scholar
  57. 57.
    K.E. Wohlfarth-Bottermann, this volume.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. C. Earnshaw
    • 1
  1. 1.Department of Pure and Applied PhysicsThe Queen’s University of BelfastBelfastNorthern Ireland

Personalised recommendations