Chemotaxis and Band Formation of Escherichia Coli Studied by Light Scattering

  • Paul C. Wang
  • Sow-Hsin Chen
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 59)


The phenomenon that certain motile bacteria move toward chemicals that aid their survival and away from chemicals that are harmful, is called “chemotaxis”. For instance, bacteria are attracted by nutritious sugars and amino acids, and repelled by phenol and their own excretory products such as acids and alcohols. The macroscopic aspects of bacterial chemotaxis have been known ever since the end of the 19th century, through the work of Engelmann (1) and Pfeffer (2). In 1966, Adler (3) revived the study using modern microbiology techniques. Subsequently, Berg and Brown (4) introduced the tracking microscope, and MacNab and Koshland (5) developed the temporal gradient apparatus. These efforts combined with other genetic analyses provide a detailed microscopic picture of bacterial chemotaxis. Escherichia coli and Salmonella typhimurium were commonly chosen for study because vast knowledge of their biochemistry and genetics exists. We have chosen E. coli (wild type K12) as a model system because its light scattering properties have been extensively investigated by our group during the last ten years (6,7,8).


Band Formation Band Profile Scattered Light Intensity Migration Speed Bacterial Chemotaxis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. W. Engelmann, Neue Methode zur Untersuchung der Sauerstoffausscheidung pflauzlicher und thierischer Organismen, Pflugers Arch. Ges. Physio1. 25: 285–292 (1881).CrossRefGoogle Scholar
  2. 2.
    W. Pfeffer, Uber chemotaktische Bewegungen von Bakterien. Flagellation und Volvocineen, Unters. Botan. Inst. Tubingen. 2: 582–663 (1888).Google Scholar
  3. 3.
    J. Adler, Chemotaxis in bacteria, Science (Wash., D.C.) 153: 708–716 (1966).ADSCrossRefGoogle Scholar
  4. 4.
    H. C. Berg and D. A. Brown, Chemotaxis in Escherischia coli analyzed by three-dimensional tracking, Nature, 239: 500–504 (1972).ADSCrossRefGoogle Scholar
  5. 5.
    R. M. MacNab and D. E. Koshland, Jr., The gradient-sensing mechanism in bacterial chemotaxis, Proc. Natl. Acad. Sci. USA, 69: 2509–2512 (1972).ADSCrossRefGoogle Scholar
  6. 6.
    M. Holz and S. H. Chen, Quasi-elastic light scattering from migration chemotactic bands of Escherichia coli, Biophys. J. 23: 15–31 (1978).CrossRefGoogle Scholar
  7. 7.
    M. Holz and S. H. Chen, Spatio-Temporal structure of migrating chemotactic band of Escherichia coli. I. Traveling band profile, Biophys. J. 26: 243–261 (1979).Google Scholar
  8. 8.
    P. Wang and S. H. Chen, Quasi-elastic light scattering from migrating chemotactic bands of Escherichia coli. II. Analysis of anisotropie bacterial motions, Biophys. J. 36: 203–219 (1981).Google Scholar
  9. 9.
    J. Adler, Chemotaxis in bacteria, Annu. Rev. Biochem., 44: 341–356 (1975).CrossRefGoogle Scholar
  10. 10.
    H. C. Berg, Chemotaxis in bacteria, Annu. Rev. Biophys. Bioeng., 4: 119–136 (1975).CrossRefGoogle Scholar
  11. 11.
    D. E. Koshland, Jr. “Bacterial Chemotaxis as a Model Behavioral System ” Raven Press, N.Y., N.Y. (1980).Google Scholar
  12. 12.
    G. F. Keller and L. A. Segal, Traveling Bands of Chemotactic Bacteria: A Theoretical Analysis, J. Theor. Biol. 30: 235–248 (1971).Google Scholar
  13. 13.
    R. Mesibov, G. W. Ordal, and J. Adler, The range of attractant concentrations bacterial chemotaxis and the threshold and size of response over this range–Weber law and related phenomena, J. Gen. Physiol. 62: 203–223 (1973).CrossRefGoogle Scholar
  14. 14.
    T. L. Scribner, L. A. Segel, and E. H. Rogers, A numerical study of the formation and propagation of traveling bands of chemotactic bacteria, J. Theor. Biol. 46: 189 (1974).CrossRefGoogle Scholar
  15. 15.
    H. Bateman, “Tables of integral transforma”. Vol. 1, McGraw-Hill, New York,(1954).Google Scholar
  16. 16.
    S. H. Chen and P. C. Wang, Light Scattering Measurement of the Two-State Motional Parameters of Escherichia Coli in Chemotactic Bands, “Biomedical Applications of Laser Light Scattering”, Sattelle, D. et al. eds., North Holland, (1981)Google Scholar
  17. 17.
    S. H. Chen, W. B. Veldkamp, and C. C. Lai, Simple digital clipped correlator for photon correlation spectroscopy. Rev. Sci. Instrum. 46: 1356 (1975).ADSCrossRefGoogle Scholar
  18. 18.
    R. Nossal, S. H. Chen, and C. C. Lai, Use of laser scattering for quantitative determinations of bacterial motility, Opt. Comm. 4: 35, (1977).ADSCrossRefGoogle Scholar
  19. 19.
    M. Holz, and S. Chen, Tracking bacterial movements using a onedomensional fringe system, Opt. Lett. 2: 109, (1978).ADSCrossRefGoogle Scholar
  20. 20.
    S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15: 1, (1943).MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    J. C. Oliver, Correlation techniques, “Photon Correlation and Light Beating Spectroscopy”, H. Z. Cummins, and E. R. Pike, ed., Plenum Press, New York (1974).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Paul C. Wang
    • 1
  • Sow-Hsin Chen
    • 1
  1. 1.Nuclear Engineering DepartmentMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations