The Rotation Model for Filament Sliding as Applied to the Cytoplasmic Streaming

  • Robert Jarosch
  • Ilse Foissner
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 59)


Many details of cytoplasmic streaming and related motions performed by cellular filaments and microtubules are imitated by working models with rotating helices (film), indicating the validity of these models. The rotations are obviously connected with the winding and unwinding motions of cytoskeleton-associated helical filaments (filament-associated proteins or MAPs). These winding motions cause sliding as shown by the working models: the same rotational direction of two connected elements means parallel sliding; the opposite direction, antiparallel sliding. The latter system shows three velocities related by the formula
$$ {{v}_{w}}=\frac{{{v}_{{{F}_{2}}}}-{{v}_{{{F}_{1}}}}}{2} $$
, where vW is the velocity of the helical waves which are uni-directional on both rotating elements. \( {{v}_{{{F}_{2}}}} \) is the sliding velocity of the quicker element. \( {{v}_{{{F}_{1}}}} \) is the sliding velocity of the slower element in the opposite direction.

This model is applied to the actin filaments of a plasmodial strand, where \( {{v}_{{{F}_{1}}}} \)~\( {{v}_{{{F}_{2}}}} \) and vW~zero. It explains important dynamic features of the strana, , especially its contraction-relaxation cycle, as the molecular basis of the shuttle streaming. Applied to the actin filaments of a characean cell, it explains the two velocities of the protoplasmic streaming, if \( {{v}_{{{F}_{2}}}} \) means the rapid sliding velocity of the endoplasm (about 50 µm/s at 20° C), and vW the slower motion of particles closely attached to the subcortical fibrils (about 20 µm/s). The unknown results: \( {{v}_{{{F}_{2}}}}-2{{v}_{W}}=10\mu m/s \). From this it can be expected that the subcortical filaments slide temporarily with a velocity of about 10 µm/s in the opposite direction of the streaming.


Actin Filament Contracting Phase Rotation Model Cytoplasmic Streaming Physarum Polycephalum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Corti, Osservazioni microscopiche sulla tremella e sulla circolatione del fluido in una pianta acquajuola, Lucca (1774).Google Scholar
  2. 2.
    B. Corti, Journal de Physique (Rosier) 8: 232 (1776).Google Scholar
  3. 3.
    L. C. Treviranus, Beiträge zur Pflanzenphysiologie, Göttingen (1810/11).Google Scholar
  4. 4.
    K. F. P. v. Martius, fiber den Bau und die Natur der Charen, Nova Acta Leop. 9 (1815)Google Scholar
  5. 5.
    Gozzi, Giorn. di Fis., Brugnatelli, (1818).Google Scholar
  6. 6.
    R. Jarosch, The torsional movement of tropomyosin and the molecular mechanism of the thin filament motion, in: “Cell Motility: Molecules and organization, S. Hatano, H. Ìshikawa and H. Sato, eds., University of Tokyo Press, Tokyo, 291–319 (1979).Google Scholar
  7. 7.
    G. B. Amici, Osservazioni sulla circolazione del succhio nella Chara, Mem. mat, fis. Soc. Italiana, Modena 18: 183–202 (1820).Google Scholar
  8. 8.
    A. Donné, Note sur la circulation du Chara, Ann. Sci. Nat., 2. sér. 10: 346–348 (1838).Google Scholar
  9. 9.
    H. J. Dutrochet, Observations sur le Chara flexilis, C. R. Acad. sci. Paris 5: 775–784.Google Scholar
  10. 10.
    H. J. Dutrochet, Observations sur la circulation des fluides chez Chara fragilis Desvaux, Ann. Sci. Nat., 2. sér. 9:5–38, 65–79 (1838).Google Scholar
  11. 11.
    G. Hörmann, Studien über die Protoplasmaströmung bei den Characeen, Jena (1898).Google Scholar
  12. 12.
    K. Linsbauer, Untersuchungen über Plasma und Plasmaströmung an Chara-Zellen. I. Beobachtungen an mechanisch und operativ beeinflußten Zellen, Protoplasma 5: 563–621 (1929).Google Scholar
  13. 13.
    N. Kamiya and K. Kuroda, Velocity distribution of the protoplasmic streaming in Nitella cells, Bot. Mag. Tokyo 69: 544–554 (1956)Google Scholar
  14. 14.
    R. Jarosch, Plasmaströmung und Chloroplastenrotation bei Characeen, Phyton (Argentina) 6: 87–107 (1956).Google Scholar
  15. 15.
    R. Jarosch, Die Protoplasmafibrillen der Characeen, Protoplasma 50: 93–108 (1958).CrossRefGoogle Scholar
  16. 16.
    N. Kamiya, Protoplasmic streaming, in: “Protoplasmatologia VIII. 3a, L. V. Heilbrunn and F. Weber, eds., Springer, Wien (1959).Google Scholar
  17. 17.
    T. Hayashi, Experimental studies on protoplasmic streaming in Characeae, Scientific Papers of the College of Gen. Education, Univ. of Tokyo 10: 245–282 (1960).Google Scholar
  18. 18.
    H. J. Dutrochet, Le magnétisme peut-il exercer de l’influence sur la circulation du Chara ? C. R. Acad. Sci. Paris 22: 619–622 (1846).Google Scholar
  19. 19.
    R. Jarosch, Die Dynamik im Characeen-Protoplasma, Phyton (Argentina) 15: 43–66 (1960).Google Scholar
  20. 20.
    E. Kamitsubo, Motile protoplasmic fibrils in cells of Characeae, Proc. Jap. Acad. 42:507–511, 640–643 (1966).Google Scholar
  21. 21.
    E. Kamitsubo, Motile protoplasmic fibrils in cells of Characeae, Protoplasma 74: 53–70 (1972).CrossRefGoogle Scholar
  22. 22.
    K. Kuroda, Behaviour of naked cytoplasmic drops isolated from plant cells, in: “Primitive motile systems in cell biology, R. D. Allen and N. Kamiya, eds., Academic Press, New York and London (1964).Google Scholar
  23. 23.
    R. Jarosch, Grundlagen einer Schraubenmechanik des Protoplasmas, Protoplasma 57: 448–500 (1963).CrossRefGoogle Scholar
  24. 24.
    R. Jarosch, Screw-mechanical basis of protoplasmic movement, in: “Primitive motile systems in cell biology, R. D. Allen and N. Kamiya,, Academic Press, New York and London (1964).Google Scholar
  25. 25.
    A. Meyer, Die Plasmabewegung, verursacht durch eine geordnete Wärmebewegung von Molekülen, Ber. dtsch. bot. Ges. 38: 36–43 (1920).Google Scholar
  26. 26.
    T. Hayama and M. Tazawa, Ca2+ reversibly inhibits active rotation of chloroplasts is isolated cytoplasmic droplets of Chara, Protoplasma 102: 1–9 (1980).CrossRefGoogle Scholar
  27. 27.
    Y. Tominaga and M. Tazawa, Rever§ible inhibition of cytoplasmic streaming by intracellular Ca2+ in tonoplast-free cells of Chara australis, Protoplasma 109: 103–111 (1981).CrossRefGoogle Scholar
  28. 28.
    N. Kamiya, Physical and chemical basis of cytoplasmic streaming, Ann. Rev. Plant Physiol. 32: 205–236 (1981).CrossRefGoogle Scholar
  29. 29.
    R. Nagai and T. Hayama, Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming in Chara inter-nodal cells, J. Cell Sci. 36: 121–136 (1979).Google Scholar
  30. 30.
    R. E. Williamson, Filaments associated with the endoplasmic reticulum in the streaming cytoplasm of Chara corallina, Eur. J. Cell Biol. 20: 177–183 (1979).Google Scholar
  31. 31.
    N. S. Allen, Cytoplasmic streaming and transport in the characean alga Nitella, Can. J. Bot. 58: 786–796 (1980).CrossRefGoogle Scholar
  32. 32.
    R. Jarosch and I. Foissner, A rotation model for microtubule and filament sliding, Eur. J. Cell Biol. 26: 295–302 (1982).Google Scholar
  33. 33.
    J. H. Hartwig and Th. P. Stossel, Structure of macrophage actin-binding protein molecules in solution and interacting with actin filaments, J. Mol. Biol. 145: 563–581 (1981).CrossRefGoogle Scholar
  34. 34.
    J. S. Morrow and V. T. Marchesi, Self-assembly of spectrin oligomers in vitro: A basis for a dynamic cytoskeleton, J. Cell Biol. 88: 463–468 (1981).CrossRefGoogle Scholar
  35. 35.
    K. E. Wohlfarth-Bottermann, Weitreichende, fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. I., Protoplasma 54: 514–539 (1962).CrossRefGoogle Scholar
  36. 36.
    K. E. Wohlfarth-Bottermann, Weitreichende, fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. II., Protoplasma 57: 747–761 (1963).CrossRefGoogle Scholar
  37. 37.
    K. E. Wohlfarth-Bottermann, Differentiations of ground cytoplasm and their significance for the generation of the motive force of amoeboid movement, in: Primitive motile systems in cell biology, R. D. Allen and N. Kamiya, eds., Academic Press, New York and London (1964).Google Scholar
  38. 38.
    N. Kamiya, The mechanism of cytoplasmic movement in a myxomycete plasmodium, in: “Aspects of cell motility, Symp. Soc. Exp. Biol. Cambridge 22:199–214 (1968).Google Scholar
  39. 39.
    A. Loewy, An actomyosin-like substance from the plasmodium of a myxomycete, J. Cell. Comp. Physiol. 40: 127–156 (1952).CrossRefGoogle Scholar
  40. 40.
    R. Nagai and T. Kato, Cytoplasmic filaments and their assembly into bundles in Physarum plasmodium, Protoplasma 86: 141–158 (1975).CrossRefGoogle Scholar
  41. 41.
    R. Nagai, Y. Yoshimoto and N. Kamiya, Changes in fibrillar structures in the plasmodial strand in relation to the phase of contraction-relaxation cycle, Proc. Jap. Acad. 51: 38–43 (1975).Google Scholar
  42. 42.
    R. Nagai, Y. Yoshimoto and N. Kamiya, Cyclic production of tension force in the plasmodial strand of Physarum polycephalum and its relation to microfilament morphology, J. Cell Sci. 33: 205–225 (1978).Google Scholar
  43. 43.
    G. Isenbert and K. E. Wohlfarth-Bottermann, Transformation of cytoplasmic actin, Cell Tiss. Res. 173: 495–528 (1976).Google Scholar
  44. 44.
    H. Tanaka and S. Hatano, Conforma sonal changes induced in plasmodium actin polymer by Cah+ in the presence of muscle native tropomyosin, J. Mechanochemistry, Cell Motility 3: 195–200 (1976).Google Scholar
  45. 45.
    H. Nakajima and R. D. Allen, The changing pattern of birefringence in plasmodia of the slime mold Physarum polycephalum, J. Cell Biol. 25: 361–374 (1965).CrossRefGoogle Scholar
  46. 46.
    M. Ishigami, R. Nagai and K. Kuroda, A polarized light and electron microscopic study of the birefringent fibrils in Physarum plasmodia, Protoplasma 109: 91–102 (1981).CrossRefGoogle Scholar
  47. 47.
    H. Sato, S. Hatano and Y. Sato, Contractility and protoplasmic streaming preserved in artificially induced plasmodial fragments, the “caffeine drops, Protoplasma 109: 187–208 (1981).CrossRefGoogle Scholar
  48. 48.
    N. Hülsmann and K. E. Wohlfarth-Bottermann, Räumliche und zeitliche Analyse von kontraktionsabhängigen Oberflächenbewegungen bei Physarum polycephalum, Cytobiologie 17: 23–41 (1978).Google Scholar
  49. 49.
    N. Hülsmann and K. E. Wohlfarth-Bottermann, Spatio-temporal relations between protoplasmic streaming and contraction activities in plasmodial veins of Physarum polycephalum, Cytobiologie 17: 317–334 (1978).Google Scholar
  50. 50.
    K. E. Wohlfarth-Bottermann, Contraction phenomena in Physarum: New results, Acta Protozool. 18: 59–73 (1979).Google Scholar
  51. 51.
    N. Kamiya and Y. Yoshimoto, Dynamic characteristics of the cytoplasm. A study on the plasmodial strand of a myxomycete, in: “Aspects of cellular and molecular physiology, K. Hamaguchi, ed., Tokyo University Press (1972).Google Scholar
  52. 52.
    N. Kamiya, R. D. Allen and R. Zeh, Contractile properties of the slime mold strand, Acta Protozool. 11: 113–124 (1972).Google Scholar
  53. 53.
    N. Kamiya, Contractile properties of the plasmodial strand, Proc. Jpn. Acad. 46: 1026–1031 (1970).Google Scholar
  54. 54.
    K. E. Wohlfarth-Bottermann and M. Fleischer, Cycling aggregation patterns of cytoplasmic F-actin coordinated with oscillating tension force generation, Cell Tiss. Res. 165: 327–344 (1976).Google Scholar
  55. 55.
    N. Kamiya and W. Seifriz, Torsion in a protoplasmic thread, Exp. Cell Res. 6: 1–16 (1954).CrossRefGoogle Scholar
  56. 56.
    A. Grebecki and M. Ciéslawska, Plasmodium of Physarum polycephalum as a synchronous contractile system, Cytobiolopgie 17: 335–342 (1978).Google Scholar
  57. 57.
    Y. Yoshimoto, T. Sakai and N. Kamiya, ATP oscillation in Physarum plasmodium, Protoplasma 109: 159–168 (1981).CrossRefGoogle Scholar
  58. 58.
    I. G. Donaldson, Cyclic longitudinal fibrillar motion as a basis for steady rotational protoplasmic streaming, J. theor. Biol. 37: 75–91 (1972).MathSciNetCrossRefGoogle Scholar
  59. 59.
    Y. M. Kersey, P. K. Hepler, B. A. Palevitz and N. K. Wessells, Polarity of actin filaments in characean algae, Proc. Natl. Acad. Sci. USA 73: 165–167 (1976).ADSCrossRefGoogle Scholar
  60. 60.
    I. Foissner and R. Jarosch, The motion mechanics of Nitella filaments (cytoplasmic streaming): Their imitation in detail by screw-mechanical models, Cell Motility 1: 371–385 (1981).CrossRefGoogle Scholar
  61. 61.
    E. Kamitsubo, Effect of supraoptimal temperatures on the function of the subcortical fibrils and an endoplasmic factor in Nitella internodes, Protoplasma 109: 3–12 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Robert Jarosch
    • 1
  • Ilse Foissner
    • 1
  1. 1.Institut für Botanik der UniversitätSalzburgAustria

Personalised recommendations