Dynamic Cellular Phenomena in Physarum Possibly Accessible to Laser Techniques

  • K. E. Wohlfarth-Bottermann
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 59)


Contractile and motile phenomena in plasmodia of Physarum are considered with respect to possibilities of applying laser techniques for registration and for an analysis of their molecular basis. In addition to protoplasmic strands, the advantages of two special models are discussed, protoplasmic drops and endoplasmic veins. The presentation is focussed on the following phenomena: endoplasmic shuttle streaming, contractile activities of the force-generating cytoplasmic actomyosin, dynamics of actin transformations (sol ⇌ gel transitions) and actin-myosin interactions, synchronisation and wave phenomena of contractile activities, and membrane flow.


Cytoplasmic Streaming Physarum Polycephalum Laser Data Protoplasmic Streaming Radial Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Earnshaw and M. W. Steer, Studies of cellular dynamics by laser Doppler microscopy, Pestic. Sci. 10: 358 (1979).CrossRefGoogle Scholar
  2. 2.
    K. E. Wohlfarth-Bottermann, Ursachen von Zellbewegungen, Cytoplasmatische Actomyosine und ihre Bedeutung für Protoplasmaströmungen und Zellmotilität, Leopoldina 21; 85 (1975).Google Scholar
  3. 3.
    H. Komnick, W. Stockem and K. E. Wohlfarth-Bottermann, Cell Motility: Mechanisms in protoplasmic streaming and ameboid movement, Int. Rev. Cytol. 34: 169 (1973).CrossRefGoogle Scholar
  4. 4.
    K. E. Wohlfarth-Bottermann, Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. X. Die Anordnung der Actomyosinfibrillen in experimentell unbeeinflußten Protoplasmaadern von Physarum in situ, Protistologica XI: 19 (1975).Google Scholar
  5. 5.
    N. Kamiya, Protoplasmic streaming, in: “Protoplasmatologia VIII. 3a”, L. V. Heilbrunn and F. Weber, eds., Springer, Wien (1959).Google Scholar
  6. 6.
    K. E. Wohlfarth-Bottermann, Plasmalemma invaginations as characteristic constituents of plasmodia of Physarum polycephalum, J. Cell Sci. 16: 23 (1974).Google Scholar
  7. 7.
    K. E. Wohlfarth-Bottermann, Oscillatory contraction activity in Physarum, J. Exp. Biol. 81: 15 (1979).Google Scholar
  8. 8.
    F. Achenbach, W. Naib-Majani and K. E. Wohlfarth-Bottermann, Plasmalemma invaginations of Physarum dependent on the nutritional content of the plasmodial environment, J. Cell Sci. 36: 355 (1979).Google Scholar
  9. 9.
    N. Hülsmann and K. E. Wohlfarth-Bottermann, Spatio-temporal relationships between protoplasmic streaming and contraction activities in plasmodial veins of Physarum polycephalum, Cytobiologie 17: 317 (1978).Google Scholar
  10. 10.
    N. Hülsmann and K. E. Wohlfarth-Bottermann, Räumliche und zeitliche Analyse von kontraktionsabhängigen Oberflächenbewegungen bei Physarum polycephalum, Cytobiologie 17: 23 (1978).Google Scholar
  11. 11.
    A. Grebecki and M. Cieslaswka, Dynamics of the ectoplasmic walls during pulsation of plasmodial veins of Physarum polycephalum, Protoplasma 97: 365 (1978).CrossRefGoogle Scholar
  12. 12.
    K. E. Wohlfarth-Bottermann and F. Achenbach, Lateral apertures as passage-ways between ectoplasm and endoplasm in plasmodial strands of Physarum, Cell Biol. Int. Rpts. 6: 57 (1982).CrossRefGoogle Scholar
  13. 13.
    U. Achenbach and K. E. Wohlfarth-Bottermann, Synchronization and signal transmission in protoplasmic strands of Physarum. The endoplasmic streaming as a pacemaker and the importance of phase deviations for the control of streaming reversal, Planta 151: 584 (1981).CrossRefGoogle Scholar
  14. 14.
    K. Götzv. Olenhusen and K. E. Wohlfarth-Bottermann, Evidence for actin transformations during the contraction-relaxation cycle of cytoplasmic actomyosin: Cycle blockade by phalloidin-injection, in: “Cell Motility, Molecules and Organization”, S. Hatano, H. Ishikawa and H. Sato, eds., University of Tokyo Press, Tokyo (1979).Google Scholar
  15. 15.
    G. Isenberg and K. E. Wohlfarth-Bottermann, Transformation of cytoplasmic actin. Importance for the organization of the contractile gel reticulum and the contraction-relaxation cycle of cytoplasmic actomyosin, Cell Tiss. Res. 173: 495 (1976).Google Scholar
  16. 16.
    K. E. Wohlfarth-Bottermann and G. Isenberg, Dynamics and molecular basis of the contractile system of Physarum. in: “Contractile Systems in Non-Muscle Tissues”, S. V. Perry, A. Margreth and R.S. Adelstein, eds., North/Holland Publ. Comp., Amsterdam (1976).Google Scholar
  17. 17.
    W. Gawlitta, H. U. Hoffmann and W. Stockem, Morphology and dynamic activity of the cell surface in different types of microplasmodia of the acellular slime mold Physarum polycephalum, Publ. Univ. of Innsbruck 120: 176 (1979).Google Scholar
  18. 18.
    K. Götz v. Olenhusen, H. Jücker and K. E. Wohlfarth-Bottermann, Induction of a plasmodial stage of Physarum without plasma-lemma invaginations, Cell Tiss. Res. 197: 463 (1979).Google Scholar
  19. 19.
    F. Achenbach, U. Achenbach and K. E. Wohlfarth-Bottermann, Plasmalemma invaginations, contraction and locomotion in normal and caffeine-treated protoplasmic drops of Physarum, Eur. J. Cell Biol. 20: 12 (1979).Google Scholar
  20. 20.
    T. Ueda, K. Götz v. Olenhusen and K. E. Wohlfarth-Bottermann, Reaction of the contractile apparatus in Physarum to injected Ca++, ATP, ADP and 5’ AMP, Cytobiologie 18: 76 (1978).Google Scholar
  21. 21.
    K. E. Wohlfarth-Bottermann, Tensiometric demonstration of endogenous oscillating contractions in plasmodia of Physarum polycephalum, Z. Pflanzenphysiol. 76: 14 (1975).Google Scholar
  22. 22.
    N. Kamiya, Physical and chemical basis of cytoplasmic streaming, Ann. Rev. Plant Physiol. 32: 205 (1981).CrossRefGoogle Scholar
  23. 23.
    K. E. Wohlfarth-Bottermann, Oscillating contractions in protoplasmic strands of Physarum: Simultaneous tensiometry of longitudinal and radial rhythms, periodicity analysis and temperature dependence, J. Exp. Biol. 67: 49 (1977).Google Scholar
  24. 24.
    K. E. Wohlfarth-Bottermann, Weitreichende, fibrilläre Protoplasmadifferenzierungen and ihre Bedeutung für die Protoplasmaströmung. II. Lichtmikroskopische Darstellung, Protoplasma 57: 747 (1963).CrossRefGoogle Scholar
  25. 25.
    K. E. Wohlfarth-Bottermann, Weitreichende, fibrilläre Protoplasmadifferenzierungen and ihre Bedeutung für die Protoplasmaströmung. III. Entstehung and experimentell induzier-bare Musterbildungen, Roux’Archiv Entwicklungsmech. 156: 371 (1965).CrossRefGoogle Scholar
  26. 26.
    K. E. Wohlfarth-Bottermann and M. Fleischer, Cycling aggregation pattern of cytoplasmic F-actin coordinated with oscillating tension force generation, Cell Tiss. Res. 165: 327 (1976).Google Scholar
  27. 27.
    M. Fleischer and K. E. Wohlfarth-Bottermann, Correlation between tension force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands, Cytobiologie 10: 339 (1975).Google Scholar
  28. 28.
    W. Naib-Majani, W. Stockem, K. E. Wohlfarth-Bottermann, M. Osborn and K. Weber, Immunocytochemistry of the acellular slime mold Physarum polycephalum. Spatial organization of cytoplasmic actin, Eur. J. Cell Biol. (in press).Google Scholar
  29. 29.
    Z. Baranowski and K. E. Wohlfarth-Bottermann, Endoplasmic veins from plasmodia of Physarum polycephalum: a new strand model with defined age, structure and behaviour, Eur. J. Cell Biol. 27: 1 (1982).Google Scholar
  30. 30.
    K. E. Wohlfarth-Bottermann und W. Stockem, Die Regeneration des Plasmalemmas von Physarum polycephalum, Roux’Archiv Entwicklungsmech. 164: 321 (1970).CrossRefGoogle Scholar
  31. 31.
    F. Achenbach and K. E. Wohlfarth-Bottermann, Morphogenesis and disassembly of the circular plasmalemma invagination system in Physarum polycephalum, Differentiation 19: 179 (1981).CrossRefGoogle Scholar
  32. 32.
    Z. Baranowski, The contraction-relaxation waves in Physarum polycephalum plasmodia, Acta Protozoologica 17: 377 (1978).Google Scholar
  33. 33.
    Z. Hejnowicz and K. E. Wohlfarth-Bottermann, Propagated waves induced by gradients of physiological factors within plasmodia of Physarum polycephalum, Planta 150: 144 (1980).CrossRefGoogle Scholar
  34. 34.
    A. Grebecki and M. Cieslawska, Plasmodium of Physarum polycephalum as a synchronous contractile system, Cytobiologie 17: 335 (1978).Google Scholar
  35. 35.
    Y. Yoshimoto and N. Kamiya, Studies on contraction rhythm of the plasmodial strand. III. Role on endoplasmic streaming in synchronization of local rhythms, Protoplasma 95: 111 (1978).CrossRefGoogle Scholar
  36. 36.
    Y. Takeuchi and M. Yoneda, Synchrony in the rhythm of the contraction-relaxation cycle in two plasmodial strands of Physarum polycephalum, J. Cell Sci. 26: 151 (1977).Google Scholar
  37. 37.
    K. E. Samans, K. Götz v. Olenhusen and K. E. WohlfarthBottermann, Oscillating contractions in protoplasmic strands of Physarum: Infrared reflexion as a non-invasive registration technique, Cell Biol. Int. Rpts. 2: 271 (1978).CrossRefGoogle Scholar
  38. 38.
    F. Achenbach, U. Achenbach, K. E. Samans and K. E. WohlfarthBottermann, An inexpensive “silicon photo device” for trans-microscopic registration of rhythmical movement phenomena, Microscopica Acta 84: 43 (1981).Google Scholar
  39. 39.
    D. Kessler, Plasmodial structure and motility,in: “Cell Biology of Physarum and Didymium”, H. C. Aldrich and J. W. Daniel, eds., Academic Press, New York (1982).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • K. E. Wohlfarth-Bottermann
    • 1
  1. 1.Institute for CytologyUniversity of BonnGermany

Personalised recommendations