Actin Polymerization in Cell Cytoplasm

  • E. Del Giudice
  • S. Doglia
  • M. Milani
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 59)


Recent theoretical(1) and experimental(2) research strongly supports the existence of coherent electric vibrations inside living matter. Biomolecules, schematized as sets of polar oscillators open to an external energy flow, can oscillate coherently in a particular vibrational mode when appropriate conditions are fulfilled, namely the external energy supply exceeds a certain threshold and is completely dissipated outside. The energy supply in a living cell can be provided by metabolic chemical reactions. Giant coherent oscillations, with typical frequencies of the order of magnitude of 1011–1013Hz, can then be produced and propagate inside cells.


Actin Polymerization Cell Cytoplasm Nonlinear Refractive Index Electric Birefringence Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Fröhlich in “Advances in Electronics and Electron Physics” L. Marton and C. Marton eds., Academic Press, New York (1980) vol. 53, p. 85.Google Scholar
  2. 2.
    S.J. Webb, Physics Reports 60: 201 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    S.J. Webb, Collective Phenomena 3: 313 (1981).Google Scholar
  4. 4.
    E. Del Giudice, S. Doglia and M. Milani, Phys. Lett. 85A: 402 (1981).CrossRefGoogle Scholar
  5. 5.
    E. Del Giudice, S. Doglia and M. Milani and S.J. Webb, to appear in Phys. Lett. A.Google Scholar
  6. 6.
    E. Del Giudice, S. Doglia and M. Milani, to appear in Physica Scripta.Google Scholar
  7. 7.
    S.A. Akhmanov, R.P. Sukhorukov and R.V. Khokhlov, in “Laser Handbook”, F.T. Arecchi and E.O. Schulz-DuBois, North-Holland, Amsterdam (1972) Ch. E3.Google Scholar
  8. 8.
    Y.R. Shen, Progr. Quant. Electr. 4: 1 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    I.I. Wolosewick and K.R. Porter, J. Cell Biol. 82: 114 (1979)CrossRefGoogle Scholar
  10. A. Hoglund, R. Karlsson, E. Arro, B. Fredriksson and U. Lindberg, J. Muscle Res. Cell Motility 1: 127 (1980)CrossRefGoogle Scholar
  11. J.S. Clegg, Collect. Phenom. 3: 289 (1981).Google Scholar
  12. R.L. Margolis and L. Wilson, Nature 293: 705 (1981).ADSCrossRefGoogle Scholar
  13. 10.
    S. Kobayasi, H. Asai and F. Oosawa, Biochim. et Biophys. Acta 88: 528 (1964).Google Scholar
  14. 11.
    S. Kobayasi, Biochim. et Biophys. Acta 88: 540 (1964).Google Scholar
  15. 12.
    E. Del Giudice, S. Doglia and M. Milani, Phys. Lett. 90A: 104 (1982).CrossRefGoogle Scholar
  16. 13.
    W.H. Panofsky and M. Phillips in “Classical Electricity and Magnetism”, Addison-Wesley, London (1955).MATHGoogle Scholar
  17. 14.
    S. Rowlands, C.P. Eisenberg and L.S. Sewchand, to appear in J. Biol. Physics.Google Scholar
  18. 15.
    L.S. Sewchand, D. Roberts and S. Rowlands, to appear in Cell Biophys.Google Scholar
  19. 16.
    I. Tinoco, J. Am. Chem. Soc. 77: 3476 (1955).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • E. Del Giudice
    • 1
    • 2
  • S. Doglia
    • 1
    • 3
  • M. Milani
    • 1
  1. 1.Istituto di Fisica dell’ UniversitàMilanoItaly
  2. 2.Istituto Nazionale di Fisica NucleareSez. di MilanoItaly
  3. 3.Gruppo Nazionale di Struttura della Materia del C.N.R.MilanoItaly

Personalised recommendations