Dynamic Light Scattering Study of Muscle F-Actin in Solution

  • Satoru Fujime
  • Shin’ichi Ishiwata
  • Tadakazu Maeda
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 59)


G-actin is globular in shape (Fig. 1a). Its molecular weight is about 42k daltons. G-actin polymerizes into F-actin under physiological salt concentrations (Fig. 1b). Based on observations by electron microscopy, a “pearl-and-necklace” model is proposed for the ultrastructure of F-actin. F-actin is a two-stranded helical polymer. The half pitch of the helix is 35 nm and within this length, there are 13 G-actins. The total length of F-actin varies according to polymerization conditions and, roughly speaking, is longer than 1 pm. As might be supposed from its structure, F-actin is rather stiff. Electron micrographs show the images of gradually curved F-actin. Tropomyosin is a rodlike protein (Fig. lc). When tropomyosin molecules are added to the solution of F-actin, they bind to F-actin and settle in the grooves of F-actin helix forming tropomyosin strands (Fig. ld). Myosin has two heads called subfragment-1 (S-1) and binds to F-actin in the absence of ATP. Partial digestion by some kind of proteases produces heavy meromyosin (HMM) and also S-1 (Fig. le).


Adductor Muscle Coherence Polystyrene Autocorrelation Macromolecule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Doi, M., 1975, J. Physique, 36: 607.CrossRefGoogle Scholar
  2. Doi, M. and Edwards, S. F., 1978, J. Chem. Soc. Faraday II, 74: 560.CrossRefGoogle Scholar
  3. Carlson, F. D. and Fraser, A. B., 1974, J. Mol. Biol., 89: 273.CrossRefGoogle Scholar
  4. Fraser, A. B., Eisenberg, E., Kielley, W. W. and Carlson, F. D., 1975, Biochemistry, 14: 2207.Google Scholar
  5. Fujime, S., 1970, J. Phys. Soc. Jpn., 29: 751.ADSCrossRefGoogle Scholar
  6. Fujime, S. and Ishiwata, S., 1971, J. Mol. BioZ., 62: 251.CrossRefGoogle Scholar
  7. Fujime, S. and Maruyama, M., 1973, Macromolecules, 6: 237.ADSCrossRefGoogle Scholar
  8. Fujime, S. and Maeda, T., 1982, Biophys. J., 38: 213.CrossRefGoogle Scholar
  9. Fujime, S., Maeda, T. and Ishiwata, S., 1982, in “Biomedical Applications of Laser Light Scattering,” eds D. Sattelle et al, Elsevier/North Holland Biomedical Press, in press.Google Scholar
  10. Hochberg, A., Low, W., Tirosh, R., Borejdo, J. and Oplatka, A., 1977, Biochim. Biophys. Acta, 460: 308.CrossRefGoogle Scholar
  11. Ishiwata, S. and Fujime, S., 1972, J. Mol. Biol., 68: 511.CrossRefGoogle Scholar
  12. Maeda, T. and Fujime, S., 1977, J. Phys. Soc. Jpn., 42: 1983.ADSCrossRefGoogle Scholar
  13. Maeda, T. and Fujime, S., 1981, Macromolecules, 14: 809.ADSCrossRefGoogle Scholar
  14. Newman, J. and Carlson, F. D., 1980, Biophys. J., 29: 37.CrossRefGoogle Scholar
  15. Rice, S. O., 1944, see “Elementary Statistical Physics,” C. Kittel, John Wiley, New York (1958), p. 117.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Satoru Fujime
    • 1
  • Shin’ichi Ishiwata
    • 1
  • Tadakazu Maeda
    • 1
  1. 1.Mitsubishi-Kasei Institute of Life SciencesTokyo 194Japan

Personalised recommendations