Advertisement

The Application of Quasi-Elastic Light Scattering to the Study of Muscular Contraction

  • Francis D. Carlson
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 59)

Abstract

In these lectures, our primary focus will be on the phenomena of biological contractility and on how photon correlation spectroscopy can be used to study the basic molecular processes from which these phenomena arise. Photon correlation spectroscopy (PCS) permits the measurement of macromolecular diffusional relaxation times ranging from 10−6 to 102 seconds and these measurements can be made with great accuracy on small quantities of material in solutions, in gels, and in intact cells. Much has been learned about the structural dynamics of contractile proteins and organelles from photon correlation and transient electric birefringence (TEB) studies. The internal structural dynamics of contractile cells have also been successfully studied with PCS. However, the condensed state of the contractile proteins within the cell and the complexity of their interactions makes the interpretation of PCS data singularly difficult. PCS studies by themselves are not sufficient to lead to a solution of the problem of muscular contraction. On the other hand, when combined with time resolved X-ray diffraction studies and nuclear magnetic resonance studies, PCS studies can be highly useful in narrowing the field of possible models for the contractile mechanism.

Keywords

Thin Filament Sarcomere Length Thick Filament Photon Correlation Spectroscopy Single Muscle Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. D. Carlson and D. R. Wilkie, “Muscle Physiology,” Prentice Hall, Inc., Englewood Cliffs, NJ (1974).Google Scholar
  2. 2.
    A. Weber and J. M. Murray, Physiol. Rev. 53: 612 (1973).Google Scholar
  3. 3.
    J. M. Squire, Ann. Rev. Bioeng. 4: 137 (1975).CrossRefGoogle Scholar
  4. 4.
    H. G. Mannherz and R. S. Goode, Ann. Rev. Biochem. 45: 427 (1976).CrossRefGoogle Scholar
  5. 5.
    R. A. Murphey, Ann. Rev. Physiol. 41: 737 (1979).CrossRefGoogle Scholar
  6. 6.
    S. B. Marston, R. T. Tregear, C. D. Rodger and M. L. Clarke, J. Mol. Biol. 128: 11 (1979).CrossRefGoogle Scholar
  7. 7.
    E. Taylor, CRC Crit. Rev. Biochem. 6: 103 (1979).CrossRefGoogle Scholar
  8. 8.
    A. F. Huxley and R. M. Simmons, Nature (Lond.) 233: 533 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    H. E. Huxley, Science 164: 1356 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    A. F. Huxley and R. M. Simmons, C.S.H.S.2.B. 37: 669 (1972).Google Scholar
  11. 11.
    W. F. Harrington, Proc. Natl. Acad. Sci. U.S.A. 68: 685 (1971).ADSCrossRefGoogle Scholar
  12. 12.
    F. Oosawa et al., C.S.H.S.2.B. 37: 277 (1972).Google Scholar
  13. 13.
    Organization of the Cytoplasm“, C.S.H.S.2.B. XLVI (1982).Google Scholar
  14. 14.
    R. H. Mendelson, in: “Cell and Muscle Motility,” R. Dowben and J. Shea, eds., Plenum Publ. Corp. (1982) pg 257.Google Scholar
  15. 15.
    S. C. Harvey and H. C. Cheung, in: “Cell and Muscle Motility,” R. Dowben and J. Shea, eds., Plenum Publ. Corp. (1982) pg. 279.CrossRefGoogle Scholar
  16. 16.
    D. D. Thomas et al., Proc. Natl. Acad. Sci. U.S.A. 72: 1729 (1975).ADSCrossRefGoogle Scholar
  17. 17.
    D. D. Thomas and R. Cooke, Biophys. J. 25: 19a (1979).Google Scholar
  18. 18.
    D. D. Thomas et al., Biophys J. 32: 873 (1980).CrossRefGoogle Scholar
  19. 19.
    J. Borejdo et al., Proc. Natl. Acad. Sci. U.S.A. 76: 6346 (1979).ADSCrossRefGoogle Scholar
  20. 20.
    J. Borejdo and S. Putnam, Biochem. Biophys. Acta 459: 578 (1977).CrossRefGoogle Scholar
  21. 21.
    H. E. Huxley and W. Brown, J. Mol. Biol. 30: 383 (1967).CrossRefGoogle Scholar
  22. 22.
    J. C. Hazelgrove and H. E. Huxley, J. Mol. Biol. 77: 549 (1973).CrossRefGoogle Scholar
  23. 23.
    J. C. Hazelgrove et al., Nature (Lond.) 261: 606 (1976).ADSCrossRefGoogle Scholar
  24. 24.
    R. W. Lymn and G. H. Cohen, Nature (Lond.) 258: 770 (1975).ADSCrossRefGoogle Scholar
  25. 25.
    H. E. Huxley et al., Proc. Natl. Acad. Sci. U.S.A. 78: 2297 (1981).ADSCrossRefGoogle Scholar
  26. 26.
    A. Elliott and G. Offer, J. Mol. Biol. 123: 505 (1978).CrossRefGoogle Scholar
  27. 27.
    K. Takahashi, J. Biochem. 83: 905 (1978).Google Scholar
  28. 28.
    M. Burke et al., Biochem. 12: 701 (1973).CrossRefGoogle Scholar
  29. 29.
    W. F. Harrington, Proc. Natl. Acad. Sci. U.S.A. 76: 5066 (1979).ADSCrossRefGoogle Scholar
  30. 30.
    J. Newman and H. Swinney, Biopolymers 15: 301 (1976).CrossRefGoogle Scholar
  31. 456.
    F. D. CARLSONGoogle Scholar
  32. 31.
    H. Z. Cummins and P. N. Pusey, in: “Photon Correlation Spectroscopy and Velocimetry,” H. Z. Cummins and E.R. Pike, eds., Plenum Publ. Corp. (1977) pg. 164.Google Scholar
  33. 32.
    Y. Allen and A. Hochberg, Rev. Sci. Inst. 46: 381 (1975).ADSGoogle Scholar
  34. 33.
    C. Montague and F. D. Carlson, in: “Advances in Enzymology,” S. Colowick and N. Kaplan, eds. (in press).Google Scholar
  35. 34.
    T. J. Racey, R. Hallett, and B. Nickel, Biophys. J. 35: 557 (1981).CrossRefGoogle Scholar
  36. 35.
    C. J. Oliver, Adv. Phys. 27: 387 (1978).ADSCrossRefGoogle Scholar
  37. 36.
    P. Nieuwenhuysen, Macromolecules 11: 832 (1978).ADSCrossRefGoogle Scholar
  38. 37.
    J. G. de la Torre and V. A. Bloomfield, Biochem. 19: 5118 (1980).Google Scholar
  39. 38.
    S. J. Broersma, J. Chem. Phys. 32: 1626 (1960).ADSCrossRefGoogle Scholar
  40. 39.
    S. J. Broersma, J. Chem. Phys. 32: 1632 (1960).ADSCrossRefGoogle Scholar
  41. 40.
    J. Newman et al., J. Mol. Biol. 116: 593 (1977).CrossRefGoogle Scholar
  42. 41.
    H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper and Row, NY (1971).Google Scholar
  43. 42.
    P. J. de Gennes, “Scaling Concepts in Polymer Physics,” Cornell Univ. Press, Ithaca, NY (1979).Google Scholar
  44. 43.
    W. A. Wegener et al., J. Chem. Phys. 73: 4086 (1980).ADSCrossRefGoogle Scholar
  45. 44.
    W. A. Wegener, Biopolymers 19: 1899 (1980).CrossRefGoogle Scholar
  46. 45.
    K. Zero and R. Pecora, Macromolecules, (in press).Google Scholar
  47. 46.
    C. C. Yang and R. Pecora, J. Chem. Phys. 72: 5333 (1980).ADSCrossRefGoogle Scholar
  48. 47.
    S. Highsmith et al., Biochem. 21: 1192 (1982).CrossRefGoogle Scholar
  49. 48.
    M. Fujiwara et al., Reports on Progress in Polymer Physics in Japan 23: 531 (1980).Google Scholar
  50. 49.
    A. B. Fraser et al., Biochem. 14: 2207 (1975)CrossRefGoogle Scholar
  51. 50.
    J. T. Yang and C. C. Yoo, Biochem. 16: 578 (1977).Google Scholar
  52. 51.
    C. Montague, K. W. Rhee, and F. D. Carlson, J. Cell Motility and Muscle Res. (in press).Google Scholar
  53. 52.
    U. Aebi et al., Nature 288: 296 (1980).ADSCrossRefGoogle Scholar
  54. 53.
    D. Suck, W. Kabsch, and H. G. Mannherz, Proc. Natl. Acad. Sci. U.S.A. 78: 4319 (1981).ADSCrossRefGoogle Scholar
  55. 54.
    F. D. Carlson and A. B. Fraser, J. Mol. Biol. 89: 273 (1974)CrossRefGoogle Scholar
  56. F. D. Carlson, J. Mol. Biol. 95: 139 (1975).CrossRefGoogle Scholar
  57. 55.
    S. Fujimi, J. Phys. Soc. Japan 29: 751 (1970).ADSCrossRefGoogle Scholar
  58. S. Ishiwata and S. Fujimi, J. Phys. Soc. Japan 31: 1601 (1971).ADSCrossRefGoogle Scholar
  59. 56.
    S. Fujimi and S. Ishiwata, J. Mol. Biol. 62: 251 (1971).CrossRefGoogle Scholar
  60. 57.
    S. Ishiwata and S. Fujimi, J. Mol. Biol. 68: 511 (1972).CrossRefGoogle Scholar
  61. 58.
    K. Mihashi, Arch. Biochem. Biophys. 107: 441 (1964).CrossRefGoogle Scholar
  62. 59.
    F. Lanni, D. L. Taylor, and B. R. Ware, Biophys. J. 35: 351 (1981).CrossRefGoogle Scholar
  63. 60.
    J. Newman and F.D. Carlson, Biophys. J. 29: 37 (1981).CrossRefGoogle Scholar
  64. 61.
    B. M. Millman and P. M. Bennett, J. Mol. Biol. 103: 439 (1976).CrossRefGoogle Scholar
  65. 62.
    T. Maeda and S. Fujimi, J. Phys. Soc. Japan 42: 1983 (1977).ADSCrossRefGoogle Scholar
  66. T. Maeda and S. Fujimi, Macromolecules 14: 809 (1981).ADSCrossRefGoogle Scholar
  67. 63.
    A. Wegner, J. Mol. Biol. 131: 839 (1979).CrossRefGoogle Scholar
  68. 64.
    C. Montague, unpublished data.Google Scholar
  69. 65.
    STUDY OF MUSCULAR CONTRACTION 457Google Scholar
  70. R. W. Rosser et al., Macromolecules 11: 1239 (1978).ADSCrossRefGoogle Scholar
  71. 66.
    T. J. Herbert and F. D. Carlson, Biopolymers 10: 2231 (1971).CrossRefGoogle Scholar
  72. 67.
    A. D’Albis and W. Gratzer, J. Biochem. 251: 2825 (1976).Google Scholar
  73. 68.
    S. Lowey et al., J. Mol. Biol. 42: 1 (1969).CrossRefGoogle Scholar
  74. 69.
    J. G. de la Torre and V. A. Bloomfield, Biochem. 19: 5118 (1980).Google Scholar
  75. 70.
    S. Kobayasi and T. Totsuka, Error! Hyperlink reference not valid . Biophys. Acta 376: 375 (1975).CrossRefGoogle Scholar
  76. 71.
    S. Highsmith et al., Proc. Natl. Acad. Sci. U.S.A. 74: 4986 (1977).ADSCrossRefGoogle Scholar
  77. 72.
    R. Mendelson et al., Biochem. 12: 2250 (1973).CrossRefGoogle Scholar
  78. 73.
    J. Borejdo and M. F. Morales, Biophys. J. 20: 315 (1977).CrossRefGoogle Scholar
  79. 74.
    F. D. Carlson, Biophys. J. 15: 633 (1975).ADSCrossRefGoogle Scholar
  80. 75.
    C. G. Dos Remedios et al., J. Gen. Physiol. 59: 103 (1972).CrossRefGoogle Scholar
  81. 76.
    C. G. Dos Remedios et al., Proc. Natl. Acad. Sci. U.S.A. 69: 2542 (1972).ADSCrossRefGoogle Scholar
  82. 77.
    K. Guth, Biophys. Struct. Mech. 6: 81 (1980).Google Scholar
  83. 78.
    R. F. Bonner and F. D. Carlson, J. Gen. Physiol. 64:555 (1975). - -Google Scholar
  84. 79.
    R. C. Haskell and F. D. Carlson, Biophys. J. 33: 39 (1981).CrossRefGoogle Scholar
  85. 80.
    S. Fujimi, in: Proc. NATO Adv. Study Inst. on Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems, S. H. Chen, B. Chu, and R. Nossal, eds., Plenum Press (1981) pg 725.Google Scholar
  86. 81.
    B. Saleh, “Photoelectron Statistics,” Springer-Verlag, Inc. NY (1978).Google Scholar
  87. 82.
    A. M. Gordon et al., J. Physiol. (Lond) 184: 170 (1966).Google Scholar
  88. 83.
    F. D. Carlson, J. Mol. Biol. 95: 139 (1975).CrossRefGoogle Scholar
  89. 84.
    R. C. Haskell and F. D. Carlson, unpublished.Google Scholar
  90. 85.
    T. Yanagida, J. Mol. Biol. 146: 539 (1981).CrossRefGoogle Scholar
  91. 86.
    K. Mihashi and P. Wahl, FEBS Lett. 52: 8 (1975).CrossRefGoogle Scholar
  92. 87.
    A. Eberstein and A. Rosenfalck, Acta Physiol. Scand. 57: 144 (1963).CrossRefGoogle Scholar
  93. 88.
    D. L. Taylor, J. Cell Biol. 68: 497 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Francis D. Carlson
    • 1
  1. 1.Dept. of BiophysicsThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations