Advertisement

Abstract

Vesicles are important cellular components that are too small (50–400 nm diameter) to be resolved by light microscopy. They are formed inside cells by the Golgi apparatus, or in plant cells by equivalent structures, the dictyosomesl. Evidence from labelling experiments and from static electron micrographs is consistent with the view that vesicles move from their sites of formation to the plasma membrane2. The vesicle membrane then fuses with the plasma membrane and releases the contents of the vesicle to the extracellular environment. The released product is called a secretion, and contains proteins (frequently enzymes), carbohydrates, lipids or lower molecular weight materials. After release these are suspended or dissolved in an aqueous medium that is partly derived from the movement of water out of the secretory cell. Secretions may, as in the case of digestive enzymes for example3, flow along ducts away from the cell surface, or may, as in the case of collagen4 and plant cell walls5, contribute to an extracellular matrix that remains in contact with the cell that secreted it.

Keywords

Vesicle Membrane Vesicle Formation Laser Light Scattering Vesicle Production Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. W. Steer, this volume: 000–000 (1983).Google Scholar
  2. 2.
    D. J. Morre and H. H. Mollenhauer, in: “Dynamic Aspects of Plant Ultrastructure”, A. W. Robards ed, McGraw-Hill, London, 84–137 (1974).Google Scholar
  3. 3.
    R. M. Case, Biol. Rev. 53: 211–354 (1978).CrossRefGoogle Scholar
  4. 4.
    B. R. Olsen and R. A. Berg, Symp. Soc. exp. Biol. 33: 57–78 (1979).Google Scholar
  5. 5.
    P. M. Ray, W. R. Eisinger and D. G. Robinson, Ber. Deutsch. Bot. Ges. 89: 121–146 (1976).Google Scholar
  6. 6.
    D. P. Siegel, B. R. Ware, D. J. Green and E. W. Westhead, Biophys. J. 22: 341–346 (1978).CrossRefGoogle Scholar
  7. 7.
    B. R. Ware, this volume: 000–000 (1983).Google Scholar
  8. 8.
    J. A. Williams, Am. J. Physiol. 235: E517 - E524 (1978).Google Scholar
  9. 9.
    M. Prentki, C. Chapponnier, B. Jeanrenaud and G. Gabbiani, J. Cell Biol. 81: 592–607 (1979).CrossRefGoogle Scholar
  10. 10.
    V. Herzog and F. Miller, Sym. Soc. exp. Biol. 33: 101–116 (1979).Google Scholar
  11. 11.
    V. Herzog and F. Miller, Cytobiologie, 18: 207 (1978).Google Scholar
  12. 12.
    M. G. Farquar, E. H. Skutelsky and C. R. Hopkins, in: “The Anterior Pituitory Gland”, A. Tixier-Vidal and M.G. Farquar ed, Academic Press, New York and London, 83–135 (1975).Google Scholar
  13. 13.
    D. Lawson and M. C. Raff, Symp. Soc. exp. Biol. 33: 337–348 (1979).Google Scholar
  14. 14.
    R. Marchbanks, Symp. Soc. exp. Biol. 33: 251–276 (1979).Google Scholar
  15. 15.
    B. Satir, C. Schooley and P. Satir, J. Cell Biol. 56: 133–178 (1973).Google Scholar
  16. 16.
    H. Plattner, C. Westphal and R. Tiggemann, J. Cell Biol. 92: 368–377 (1982).CrossRefGoogle Scholar
  17. 17.
    A. Sievers and E. Schnepf, in: “Cell Biology Monographs Vol. 8. Cytomorphogenesis in plants”, O. Kiermayer ed., Springer -Verlag, Wien, N.Y., 265–299 (1981).Google Scholar
  18. 18.
    J. M. Picton, J. C. Earnshaw and M. W. Steer, this volume: 000–000 (1983).Google Scholar
  19. 19.
    H. D. Reiss and W. Herth, Planta, 146: 615–621 (1979).CrossRefGoogle Scholar
  20. 20.
    R. J. Howard, J. Cell Sci. 48: 89–103 (1981)ADSGoogle Scholar
  21. 21.
    A. Fahn, Secretory Tissue in Plants, Academic Press, London, New York and San Francisco (1979)Google Scholar
  22. 22.
    D. J. Morré, in: “Cell Surface Reviews, Volume 4, The Synthesis Assembly and Turnover of Cell Surface Components”, G. Poste and G. L. Nicolson eds, North-Holland Publishing Co. Amsterdam, 1–83 (1977)Google Scholar
  23. 23.
    P. J. Harris and D. H. Northcote, Biochim. bio_hys. Acta 237: 56–64 (1971)CrossRefGoogle Scholar
  24. 24.
    T. M. Shannon, Y. Henry, J. M. Picton and M. W. Steer, Protoplasma 112: 189–195 (1982)CrossRefGoogle Scholar
  25. 25.
    J. M. Picton and M. W. Steer, J. Cell Sci. 49: 261–272 (1981)Google Scholar
  26. 26.
    R. L. Murray and M. W. Dubin, J. Cell Biol. 64: 705–710 (1975)CrossRefGoogle Scholar
  27. 27.
    T. L. Hill and M. W. Kirschner, Proc. Natl. Acad. Sci. USA 79: 490–494 (1982)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    J. A. Wilkins and S. Lin, Biochim. hiophys. Acta 642: 55–66 (1981)CrossRefGoogle Scholar
  29. 29.
    G. Dahl, R. Ekerdt and M. Gratzl, Symp. Soc. exp. Biol. 33: 349–368 (1979)Google Scholar
  30. 30.
    D. Allan and R. H. Michell, ibid: 323–336 (1979)Google Scholar
  31. 31.
    R. Fraley, J. Wilschut, N. Duzgunes, C. Smith and D. Papahadjopoulos, Biochemistry 19: 6021–6029 (1980)CrossRefGoogle Scholar
  32. 32.
    G. Dahl and M. Gratzl, Cytobiologie 12: 344–355 (1976)Google Scholar
  33. 33.
    I. Schulz and H. H. Stolze, Ann. Rev. Physiol. 42: 127–156 (1980)CrossRefGoogle Scholar
  34. 34.
    P. Pinto da Silva and M. L. Nogueira, J. Cell Biol. 73: 161–181 (1977)CrossRefGoogle Scholar
  35. 35.
    M. Kaliner and K. F. Austen, J. Immunol. 112: 664–674 (1974)Google Scholar
  36. 36.
    D. W. Schwab, E. Simmons and J. Scala, Amer. J. Bot. 56: 88–100 (1969)CrossRefGoogle Scholar
  37. 37.
    A. Tartakoff and P. Vassalli, J. Cell Biol. 79: 694–707 (1978)CrossRefGoogle Scholar
  38. 38.
    E. Schnepf, Z. Naturforschung 16h: 605–610 (1961)Google Scholar
  39. 39.
    W. J. Vanderwoude, D. J. Morré and C. E. Bracker, J. Cell Sci. 8: 331–351 (1971)Google Scholar
  40. 40.
    M. W. Steer, “Understanding Cell Structure”, Cambridge University Press (1981)Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Martin W. Steer
    • 1
  1. 1.Botany DepartmentThe Queen’s University of BelfastNorthern Ireland

Personalised recommendations