Advertisement

The Movement of Molecules Across Membranes: The Thermodynamic Analysis of the Dependence on Structure, Pressure, and Temperature

  • Roger A. Klein
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 59)

Abstract

The thermodynamic analysis of biological processes can be a useful phenomenological approach to understanding the molecular interactions which take place at membrane level. The parameters used to describe any particular process and the way in which it changes with alterations in structure, pressure and temperature comprise the free energy, enthalpy, entropy and molar volume change of the system.

Keywords

Arrhenius Plot Partial Molal Volume Alkyl Chain Length Linear Free Energy Relationship Lipid Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Glasstone, K.J. Laidler and H. Eyring, “The Theory of Rate Processes”, ( McGraw-Hill, New York London, 1941 ).Google Scholar
  2. 2.
    R.A. Klein, Quart. Rev. Biophys.xxx 15 (1982).Google Scholar
  3. 3.
    J.F. Danielli, in: “Surface phenomena in Chemistry and Biology”, J.F. Danielli, K.G.A. Pankhurst and A.C. Riddiford, eds., ( Pergamon Press, London E New York, 1958 ), pp. 246–265;Google Scholar
  4. W.D. Stein, “The movement of molecules across cell membranes”, ( Academic Press, New York London, 1967 ), pp. 70–75.Google Scholar
  5. 4.
    H.P. Burchfield and E.E. Storrs, “Biochemical Applications of Gas Chromatography”, ( Academic Press, New York London, 1962 ).Google Scholar
  6. S. C. Hansch and T. Fujita, J. Amer. Chem. Soc. 1616 86 (1964);Google Scholar
  7. C. Hansch, J. Med. Chem. 920 11 (1968).Google Scholar
  8. 6.
    O. Sinanoglu, in: “Molecular Associations in Biology”, B. Pullman, ed. ( Academic Press, New York London, 1968 ), pp. 427–445;Google Scholar
  9. O. Sinanoglu and S. Abdulnur, Fedn. Proc.512 24 (1965);Google Scholar
  10. T. Halicioglu and O. Sinanoglu, Ann. N.Y. Acad Sci. 308 158 (1969);Google Scholar
  11. C. Horvath, W. Melander and I. Molnar, Analyt. Chem., 142 49 (1977).Google Scholar
  12. 7.
    F. Franks, “Water”, ( Plenum Press, New York London, 1973 ), pp. 1–54.Google Scholar
  13. 8.
    C. Horvath and W. Melander, Amer. Lab., 17 10 (1978).Google Scholar
  14. 9.
    C. Tanford, Proc. natn. Acad. Sci. U.S.A. 4175 76 (1979).Google Scholar
  15. 10.
    R.B. Hermann, J. Phys. Chem. 2754 76 (1972); Proc. natn. Acad. Sci. U.S.A. 4144 74 (1977).ADSGoogle Scholar
  16. 11.
    R.A. Klein and J.C. Ellory, J. Membr. Biol.123 55 (1980).Google Scholar
  17. 12.
    J.A. Reynolds, D.B. Gilbert and C. Tanford, Proc. natn. Acad. Sci. U.S.A., 2925 71 (1974).Google Scholar
  18. 13.
    C. Tanford, “The Hydrophobic Effect: Formation of Micelles and Biological Membranes”, (John Wiley, New York F, London, 1973 ).Google Scholar
  19. 14.
    V.L. Sallee, Fedn. Proc. 310 34 (1975); Y. Katz and J.M. Diamond, J. Membr. Biol. 101 17 (1974);Google Scholar
  20. J.M. Diamond and Y. Katz, J. Membr. Biol. 121 17 (1974);Google Scholar
  21. R.F. Rekker, The Hydrophobic Fragmental Constant, (Elsevier, Amsterdam, Oxford F, New York, 1977 ).Google Scholar
  22. 15..
    V.L. Sallee, J. Membr. Biol. 187 43 (1978).Google Scholar
  23. 16.
    C. Tanford, Proc. natn. Acad. Sci. U.S.A. 4175 76 (1979);Google Scholar
  24. J.H. Hildebrand, J. Phys. Chem. 1841 72 (1968), Proc. natn. Acad. Sci. U.S.A. 194 76 (1979);ADSGoogle Scholar
  25. G. Nemethy, H. Scheraga and W. Kauzmann, J. Phys. Chem. 1842 72 (1968);Google Scholar
  26. S.J. Gill and I. Wadso, Proc. natn. Acad. Sci. U.S.A.2955 73 (1976).Google Scholar
  27. 17.
    P.J. Flory, “Statistical Mechanics of Chain Molecules”, ( John Wiley, New York London, 1969 ).Google Scholar
  28. 18.
    V.L. Sallee, Fedn. Proc. 310 34 (1975).Google Scholar
  29. 19.
    A.G. MacDonald, “Physiological Aspects of Deep Sea Biology”, ( Cambridge University Press, London and Cambridge, 1975 );Google Scholar
  30. P.W. Hochachka, Comp. Biochem. Physiol. 1 52B (1975).CrossRefGoogle Scholar
  31. 20.
    A.G. MacDonald, Biochim. biophys. Acta 26 507 (1978);MathSciNetGoogle Scholar
  32. A.G. MacDonald and W. MacNaughtan, J. Physiol. 105P 296 (1979);Google Scholar
  33. F. Ceuterick, J. Peeters, K. Heremans, H. De Smedt and H. Olbrechts, Eur. J. Biochem. 401 87 (1978);Google Scholar
  34. H. De Smedt, R. Borghgraef, F. Ceuterick and K. Heremans, Biochim. biophys. Acta 479 556 (1979).Google Scholar
  35. 21.
    F.H. Johnson, H. Eyring and B.J. Stover, “The Theory of Rate Processes in Biology and Medicine”, (John Wiley, New York F, London, 1974 ).Google Scholar
  36. 22.
    A.C. Hall, J.C. Ellory and R.A. Klein, J. Membr. Biol. 47 68 (1982).Google Scholar
  37. 23.
    F. Hofmeister, Arch. Exp. Pathol. Pharmakol. 247 24 (1888), 1 25 (1889), 395 27 (1890) and 210 28 (1891);Google Scholar
  38. H. Dayson, Biochem. J.917 34 (1940);Google Scholar
  39. J.L. Kavanan, “Structure and Function in Biological Membranes”, (Holden-Day Inc., San Francisco, 1965 ), Vol I, p. 229.Google Scholar
  40. 24.
    S.M. Johnson and K.W. Miller, Biochim. biophys. Acta 286 375 (1975).Google Scholar
  41. 25.
    S.A. Arrhenius, Z. phys. Chem. 226 IV (1889).Google Scholar
  42. 26.
    F.F. Blackman, Ann. Bot.281 19 (1905);Google Scholar
  43. A. Putter, Z. allg. Physiol. 574 16 (1914);Google Scholar
  44. W.J. Crozier, J. gen. Physiol. 531 9 (1926).Google Scholar
  45. 27.
    A.G. Lee, N.J.M. Birdsall, J.C. Metcalfe, P.A. Toon and G.B. Warren,Biochemistry3699 13 (1974);Google Scholar
  46. P.J. Quinn, Prog. Biophys. molec. Biol. 1 38 (1981);Google Scholar
  47. J. Wolfe and D.J. Bagnall, Ann. Bot. 485 45 (1980).Google Scholar
  48. 28.
    R.N. McElhaney, Chem. Phys. Lipids229 30 (1982).Google Scholar
  49. 29.
    J. Wolfe and D. Bagnall, in: “Low temperature Stress in Crop Plants: the Rôle of the Membrane”, J.M. Lyons, D. Graham and J.K. Raison, eds., ( Academic Press, New York, 1980 ), pp. 527–533.Google Scholar
  50. 30.
    G.W. Stewart, J.C. Ellory and R.A. Klein, Nature (London) 403 286 (1980).Google Scholar
  51. 31.
    H.J. Hinz, D.D.F. Shiao and J.M. Sturtevant, Biochemistry 1347 10 (1971);Google Scholar
  52. J.M. Sturtevant and P.L. Mateo, Proc. natn. Acad. Sci. U.S.A. 2584 75 (1978);Google Scholar
  53. T.Y. Tsong, R.P. Hearn, D.P. Wratnall and J..M. Sturtevant, Biochemistry 2666 9 (1970);Google Scholar
  54. H.F. Fisher, A.H. Colen and R.T. Medary, Nature (London) 271 292 (1981).Google Scholar
  55. 32.
    L. Thilo, H. Träuble and P. Overath, Biochemistry 1283 16 (1977).Google Scholar
  56. 33.
    L.A. Sklar, B.S. Hudson and R.D. Simoni, Biochemistry819 16 (1977);Google Scholar
  57. L.A. Sklar, G.P. Miljanich and E.A. Dratz, Biochemistry 1707 18 (1979).Google Scholar
  58. 34.
    K.R. Thulborn, in:Fluorescent Probes, G.S. Beddard and M.A. West, eds., (Academic Press, New York London, 1981), ch. 6, pp. 113–141.Google Scholar
  59. 35.
    E.J. Shimsick and H.M. McConnell,Biochemistry2351 12 (1973); J.C. Owicki and H.M. McConnell,Biophys. J. 383 30 (1980); B. Snyder and E. Freire, Proc. natn. Acad. Sci. U.S.A.4055 77 (1980); D. Marsh, A. Watts and P.F. Knowles, Biochemistry 3570 15 (1976).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Roger A. Klein
    • 1
  1. 1.Medical Research Council Molteno InstituteUniversity of CambridgeCambridgeUK

Personalised recommendations