Light Scattering by Model Membranes

  • J. C. Earnshaw
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 59)


It has been known since early in this centuryl that the surface of a liquid is continuously disturbed by thermal molecular agitation. The disturbances can be considered as a dynamically evolving Fourier superposition of capillary waves of all wavelengths, excited according to the classical Boltzmann probability factor.2 The amplitude of the waves is typically less than a nanometer, but they act as a weak diffraction grating, scattering light. The capillary waves can be considered to constitute ‘ripplons’ and the scattering process envisaged as

incident photon ± ripplon → scattered photon,

explicitly bringing out the analogy with Brillouin scattering. Early experimental studies2,3 demonstrated the essential correctness of the theoretical arguments. In this early work the intensity and the polarization of the scattered light were investigated. Further progress awaited the advent of the laser, which was necessary for investigations of the spectrum of the scattered light. The review of Langevin4 cites most of the literature prior to 1976; the present paper thus concentrates on work since that date, with particular reference to fluid interfaces or surfaces supporting model biological membranes.


Light Scattering Surface Pressure Model Membrane Capillary Wave Fluid Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. van Smoluchowski, Ann. Physik 25: 225 (1908).Google Scholar
  2. 2.
    L. Mandelstam, Ann. Physik 41: 609 (1913).ADSMATHCrossRefGoogle Scholar
  3. 3.
    C.V. Raman and L.A. Ramdas, Proc Roy. Soc. Lond. A. 109 150, 272 (1925).ADSGoogle Scholar
  4. 4.
    D. Langevin and J. Meunier, in Photon Correlation Spectroscopy and Ve1oci.metLy edited by H.Z. Cummins and E.R. Pike ( New York, Plenum, 1977 ) p501.Google Scholar
  5. 5.
    J. Lighthill, Waves in Fluids ( Cambridge, CUP, 1978 ) p221.MATHGoogle Scholar
  6. 6.
    E.H. Lucassen,Reynders and J. Lucassen, Adv. Coll. Interf, Sci. 2: 347 (1969).CrossRefGoogle Scholar
  7. 7.
    P.G. de Gennes and M. Papoular, in Polarization, MatiAre et Rayonnement ( Paris, Presses Universitaires, 1969 ) p243.Google Scholar
  8. 8.
    A. Vrij, J.G.H. Joosten and H.M. Fijnaut, Adv. Chem. Phys. 48: 329 (1981).CrossRefGoogle Scholar
  9. 9.
    C,H. Sohl and K. Miyano, Phys. Rev. A. 20: 616 (1979). C.H. Sohl, K. Miyano, J.B. Ketterson and G. Wong, Phys. Rey, A. 22: 1256 (1980).ADSCrossRefGoogle Scholar
  10. 10.
    F.C. Goodrich, Proc. Roy. Soc. Lond. A. 374: 341 (1981).ADSMATHCrossRefGoogle Scholar
  11. 11.
    M. Baus, J. Chem. Phys 76: 2003 (1982).Google Scholar
  12. 12.
    M.A. Bouchiat and D. Langevin, J. Coll. Interf. Sci. 63: 193 (1978).CrossRefGoogle Scholar
  13. 13.
    C.Y. Young and N.A. Clark, J. Chem. Phys. 74: 4171 (1981).ADSCrossRefGoogle Scholar
  14. 14.
    H. Lamb,Hydrodynamics ( New York, Dover, 1945 ) p 627.Google Scholar
  15. 15.
    V.G. Levich,Physicochemical Hydrodynamics ( Englewood Cliffs, Prentice-Hall, 1962 ) p603.Google Scholar
  16. 16.
    R.S. Hansen and J.A. Mann Jr., J. Appl. Phys. 35: 152 (1964).ADSMATHCrossRefGoogle Scholar
  17. 17.
    E. Mayer and J.D. Eliassen, J. Coll. Interf. Sci. 37: 228 (1971)CrossRefGoogle Scholar
  18. 18.
    D. Byrne and J.C. Earnshaw, J. Coll. Interf. Sci. 74: 467 (1980).CrossRefGoogle Scholar
  19. 19.
    M.A. Bouchiat and J. Meunier, J. de Phys. 32: 561 (1971).CrossRefGoogle Scholar
  20. 20.
    D. Byrne and J.C. Earnshaw, J. Phys. D. 12: 1133 (1979).ADSGoogle Scholar
  21. 21.
    J.C. Herpin and J. Meunier, J. de Phys. 35: 847 (1974).CrossRefGoogle Scholar
  22. 22.
    D. Langevin and M.A. Bouchiat, C.R.A.S. 272B: 1422 (1971).Google Scholar
  23. 23.
    D. Langevin and M.A. Bouchiat, J. de Phys. 33: 101 (1972).CrossRefGoogle Scholar
  24. 24.
    J.F. Crilly, PhD. Thesis (Belfast, Queen’s University, 1981). J.F. Crilly and J.C. Earnshaw, to be published. Google Scholar
  25. 25.
    N.K. Adam and G. Jessop, Proc. Roy. Soc. Lond. A. 112: 362 (1926).ADSCrossRefGoogle Scholar
  26. 26.
    L. Kramer, J. Chem Phys. 55: 2097 (1971).ADSCrossRefGoogle Scholar
  27. 27.
    R. Loudon, in Surface Excitations edited by V.M. Agranovich and R. Loudon ÇAmsterdam, North-Holland, to be published).Google Scholar
  28. 28.
    E.S. Wu and W.W. Webb, Phys. Rev. A. 8: 2077 (1973).ADSCrossRefGoogle Scholar
  29. 29.
    S. HRrd and R.D. Neuman, J. Coll. Interf. Sci. 83: 315 (1981).CrossRefGoogle Scholar
  30. 30.
    G. Loglio, E. Rillaerts and P. Joos, Coll.and Polymer Sci. 259: 1221 (1981).CrossRefGoogle Scholar
  31. 31.
    L.D. Landau and E.M. Lifschitz, Theory of Elasticity ( Oxford, Permanon Press, 1970 ).Google Scholar
  32. 32.
    S. Herd, Y. Hamnerius and O. Nilsson, J. Appl, Phys. 47: 2433 (1976).ADSCrossRefGoogle Scholar
  33. 33.
    G.E. Crawford, J.F. Crilly and J.C. Earnshaw, Farad. Symp. of the Chem. Soc. No 16, to be published (1982).Google Scholar
  34. 34.
    D. Byrne and J.C. Earnshaw, J. Phys. D. 10: L207 (1977).ADSCrossRefGoogle Scholar
  35. 35.
    J.A. Stone and W.J. Rice, J. Coll. Interf. Sci. 61: 160 (1977).CrossRefGoogle Scholar
  36. 36.
    J.C. Earnshaw, Nature 292: 138 (1981).ADSCrossRefGoogle Scholar
  37. 37.
    D. McQueen and I. Lundström, J. Chem. Soc. Faraday Trans. I. 69: 694 (1973).CrossRefGoogle Scholar
  38. 38.
    D. Byrne and J.C. Earnshaw, J. Phys. D. 12: 1145 (1979).ADSCrossRefGoogle Scholar
  39. 39.
    D. Langevin and C. Griesmar, J. Phys. D. 13: 1189 (1980).ADSCrossRefGoogle Scholar
  40. 40.
    D. Langevin, J. Coll. Interf. Sci. 80: 412 (1981).CrossRefGoogle Scholar
  41. 41.
    S. Herd and H. Lofgren, J. Coll’. Ìnterf. Sci. 60: 529 (1977).CrossRefGoogle Scholar
  42. 42.
    H. Birecki and N.M. Amer, J. de Phys. 40: C3–433 (1979).Google Scholar
  43. 43.
    W.J. Moore and H. Eyring, J. Chem. Phys. 6: 391 (1938).ADSCrossRefGoogle Scholar
  44. 44.
    J. Mingins and J.A.G. Taylor, A manual for the measurement of interfacial tension, pressure and potential at air or non-polar oil/water interfaces ( Port Sunlight, Unilever Research, 1970 ).Google Scholar
  45. 45.
    J.F. Crilly and J.C. Earnshaw, in Biomedical Applications of Laser Light Scattering edited by D.B. Sattelle, B. Ware and W. Lee (Amsterdam, Elsevier/North-Holland, in the press).Google Scholar
  46. 46.
    J.C. Earnshaw, to be published.Google Scholar
  47. 47.
    J.F. Crilly and J.C. Earnshaw, this volume.Google Scholar
  48. 48.
    E.F. Grabowski and J.A. Cowen, Biophys. J. 18: 23 (1977).CrossRefGoogle Scholar
  49. 49.
    J.F. Crilly and J.C. Earnshaw, Proceedings of the 4th International Conference on Photon Correlation Techniques in Fluid Mechanics (Stanford, Stanford University, 1980 ) p21. 1Google Scholar
  50. 50.
    G.E. Crawford and J.C. Earnshaw, this volume.Google Scholar
  51. 51.
    I. Lundström, J. Theor. Biol. 45: 487 (1974).CrossRefGoogle Scholar
  52. 52.
    F. Brochard and J.F Lennon, J. de Phys. 36: 1035 (1975).CrossRefGoogle Scholar
  53. 53.
    F. Brochard, P.G. de Gennes and P. Pfeuty, J. de Phys. 37: 1099 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. C. Earnshaw
    • 1
  1. 1.Department of Pure and Applied PhysicsThe Queen’s University of BelfastBelfastNorthern Ireland

Personalised recommendations