Advertisement

Fluorescence Techniques for the Study of Biological Motion

  • Dennis E. Koppel
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 59)

Abstract

A variety of fluorescence techniques for the study of biological motion are described and discussed. We consider three basic strategies: time-resolved emission, fluorescence photobleaching, and fluorescence correlation spectroscopy. In the first of these, the sample is excited with pulses of light short compared to the excited singlet-state lifetime. Molecular motions over the time-scale of the excited state lifetime are characterized through their effects on the observed time-resolved fluorescence emission. In the fluorescence photobleaching technique, intense photobleaching pulses, short compared to the time-scale of the motion under study (but very long compared to the excited singlet-state lifetime), are used to selectively deplete the ground-state population. Molecular motions over times long compared to the excited singlet-state lifetime are characterized by measuring the “recovery” of fluorescence after photobleaching monitored with an attenuated CW light source. In fluorescence correlation spectroscopy, in contrast, the sample is illuminated only with the CW monitoring beam. Molecular motions over times long compared to the excited-state lifetime are characterized through calculations of the correlation function of the spontaneous, stochastic fluorescence intensity fluctuations about the ensemble average.

Keywords

Impulse Response Function Fluorescence Technique Biological Motion Fluorescence Correlation Spectroscopy Scanning Mirror 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.E. Koppel, D. Axelrod, J. Schlessinger, E.L. Elson, and W.W. Webb, Biophys. J. 16: 1315 (1976).CrossRefGoogle Scholar
  2. 2.
    R.J. Cherry, Biochim. Biophys. Acta 559: 289 (1979).CrossRefGoogle Scholar
  3. 3.
    K. Jacobson, in “Lasers in Biology and Medicine”, F. Hillenkamp, kamp, R. Pratesi, and C.A. Sacchi, eds., ( Plenum Press, New York, 1980 ), p. 271.Google Scholar
  4. 4.
    R. Rigler, and P. Grasselli, in “Lasers in Biology and Medicine”, F. Hillenkamp, R. Pratesi, and C.A. Sacchi, eds., (Plenum Press, New York, 1980 ), p. 151.CrossRefGoogle Scholar
  5. 5.
    J. Yguerabide, and M.C. Foster, in “Membrane Spectroscopy”, E. Grell, ed., (Springer-Verlag, Berlin, 1981 ), p. 199.CrossRefGoogle Scholar
  6. 6.
    R. Peters, Cell Biol. Internat. Reports 5: 733 (1981).CrossRefGoogle Scholar
  7. 7.
    D.E. Koppel, in “Fast Methods in Physical Biochemistry and Cell Biology”, R.I. Sha’afi and S.M. Fernandez, eds., (Elsevier North-Holland, Amsterdam, in Press).Google Scholar
  8. 8.
    A.J. Pesce, C.G. Rosen, and T.L. Pasby, “Fluorescence Spectroscopy: An Introduction for Biology and Medicine”, ( Marcel Dekker, New York, 1971 ).Google Scholar
  9. 9.
    H.Z. Cummins, and H.L. Swinney, in “Progress in Optics”, Vol. VIII, E. Wolf, ed. ( North-Holland, Amsterdam, 1970 ).Google Scholar
  10. 10.
    E. Jakeman, in “Photon Correlation and Light Beating Spectroscopy”, H.Z. Cummins and E.R. Pike, eds. ( Plenum Press, New York, 1974 ).Google Scholar
  11. 11.
    G.R. Cooper, and C.D. McGillem, “Methods of Signal and System Analysis”, (Holt, Rinehart and Winston, New York, 1967 ).MATHGoogle Scholar
  12. 12.
    R.N. Bracewell, “The Fourier Transform and its Application”, ( McGraw-Hill, New York, 1978 ).Google Scholar
  13. 13.
    H.-J. Galla, and E. Sackmann, Biochim. Biophys. Acta 339: 103 (1974).CrossRefGoogle Scholar
  14. 14.
    C.S. Owen, J. Chem. Phys. 62: 3204 (1975).ADSCrossRefGoogle Scholar
  15. 15.
    J.M. Vanderkooi, S. Fischkoff, M. Andrich, F. Podo, and C.S. Owen, J. Chem. Phys. 63: 3661 (1975).ADSCrossRefGoogle Scholar
  16. 16.
    I.Z. Steinberg, and E. Katchalski, J. Chem. Phys. 48: 2404 (1968).ADSCrossRefGoogle Scholar
  17. 17.
    E. Haas, E. Katchalski-Katzir, and I.Z. Steinberg, Biopolymers 17: 11 (1978).CrossRefGoogle Scholar
  18. 18.
    D.D. Thomas, W.F. Carlsen, and L. Stryer, Proc. Natl. Acad. Sci. (USA) 75: 5746 (1978).ADSCrossRefGoogle Scholar
  19. 19.
    R. Rigler, and M. Ehrenberg, Q. Rev. Biophys. 6: 139 (1973).CrossRefGoogle Scholar
  20. 20.
    J.D. Jackson, “Classical Electrodynamics”, ( John Wiley and Sons, New York, 1962 ).Google Scholar
  21. 21.
    R.A. Badley, W.G. Martin, and H. Schneider, Biochemistry 12: 268 (1973).CrossRefGoogle Scholar
  22. 22.
    A. Jablonski, Z. Physik. 95: 53 (1935).ADSCrossRefGoogle Scholar
  23. 23.
    D.D. Thomas, Biophys. J. 24: 439 (1978).ADSCrossRefGoogle Scholar
  24. 24.
    F. Perrin, Annis. Phys., Paris 12: 169 (1929).Google Scholar
  25. 25.
    H.W. Huang, J. Theor. Biol. 40: 11 (1973).CrossRefGoogle Scholar
  26. 26.
    K. Kinosita, Jr., S. Kawato, and A. Ikegami, Biophys. J. 20: 289 (1977).CrossRefGoogle Scholar
  27. 27.
    M.P. Heyn, Fed. Eur. Biochem. Soc. Lett. 108: 359 (1979).CrossRefGoogle Scholar
  28. 28.
    F. Jähnig, Proc. Natl. Acad. Sci. (USA) 76: 6361 (1979).ADSCrossRefGoogle Scholar
  29. 29.
    B.A. Herman, Doctoral thesis, The University of Connecticut (1980).Google Scholar
  30. 30.
    J. Yguerabide, Methods Enzymol. 26: 498 (1972).CrossRefGoogle Scholar
  31. 31.
    I. Lewis, and W.R. Ware, Rev. Sci. Instr. 44: 107 (1973).ADSCrossRefGoogle Scholar
  32. 32.
    I. Isenberg, in “Biochemical Fluorescence”, R.F. Chen and H. Edelhoch, eds. ( Marcel Dekker, New York, 1975 ).Google Scholar
  33. 33.
    A. Gafni, R.L. Modlin, and L. Brand, Biophys. J. 15: 263 (1975).ADSCrossRefGoogle Scholar
  34. 34.
    I. Isenberg, and R. Dyson, Biophys. J. 9: 1337 (1969).CrossRefGoogle Scholar
  35. 35.
    A. Grinvald, and I.Z. Steinberg, Analyt. Biochem. 59: 583 (1974).CrossRefGoogle Scholar
  36. 36.
    P.K. Wolber, and B.S. Hudson, Biochemistry 20: 2800 (1981).CrossRefGoogle Scholar
  37. 37.
    K.O. Hodgson, H. Winick, and G. Chu, “Stanford Synchrotron Radiation Laboratory Report 76/100” ( Stanford Univ., Stanford, CA, 1976 ).Google Scholar
  38. 38.
    S.L. Shapiro, ed., “Ultrashort Light Pulses: Picosecond Techniques and Applications” (Springer, N.Y., 1977 ).Google Scholar
  39. 39.
    K.G. Spears, L.E. Cramer, and L.D. Hoffland, Rev. Sci. Instr. 49: 255 (1978).ADSCrossRefGoogle Scholar
  40. 40.
    G.R. Fleming, J.M. Morris, and G.W. Robinson, Aust. J. Chem. 30: 2337 (1977).CrossRefGoogle Scholar
  41. 41.
    B.A. Herman and S.M. Fernandez, Biochem. Biophys. Res. Commun. 103: 1112 (1981).CrossRefGoogle Scholar
  42. 42.
    M.J. Anderson, and M.W. Cohen, J. Physiol. 237: 385 (1974).Google Scholar
  43. 43.
    D. Axelrod, P. Ravdin, D.E. Koppel, J. Schlessinger, W.W. Webb, and T.R. Podleski, Proc. Natl. Acad. Sci. (USA) 73: 4594 (1976).ADSCrossRefGoogle Scholar
  44. 44.
    L.M. Smith, R.M. Weis, and H.M. McConnell, Biophys. J. 36: 73 (1981).CrossRefGoogle Scholar
  45. 45.
    P. Johnson, and P.B. Garland, FEBS Lett. 132: 252 (1981).CrossRefGoogle Scholar
  46. 46.
    D. Axelrod, D.E. Koppel, J. Schlessinger, E.L. Elson, and W.W. Webb, Biophys. J. 16: 1055 (1976).ADSCrossRefGoogle Scholar
  47. 47.
    D.E. Koppel, Biophys. J. 28: 281 (1979).ADSCrossRefGoogle Scholar
  48. 48.
    B.A. Smith, and H.M. McConnell, Proc. Natl. Acad. Sci. (USA) 75: 2759 (1978).ADSCrossRefGoogle Scholar
  49. 49.
    L.M. Smith, J.W. Parce, B.A. Smith, and H.M. McConnell, Proc Natl. Acad. Sci. (USA) 76: 4177 (1979).ADSCrossRefGoogle Scholar
  50. 50.
    B.A. Smith, W.R. Clark, and H.M. McConnell, Proc. Natl. Acad. Sci. (USA) 76: 5641 (1979).ADSCrossRefGoogle Scholar
  51. 50.
    B.A. Smith, W.R. Clark, and H.M. McConnell, Proc. Natl. Acad. Sci. (USA) 76: 5641 (1979).ADSCrossRefGoogle Scholar
  52. 52.
    D.E. Koppel, M.P. Sheetz, and M. Schindler, Biophys. J. 30: 187 (1980).CrossRefGoogle Scholar
  53. 53.
    R.A. Cone, Nature (New Biol.) 236: 39 (1972).Google Scholar
  54. 54.
    D.E. Koppel, in “Techniques in Lipid and Membrane Biochemistry”, J. Metcalfe, and T.R. Hasketh, eds. ( Elsevier/North-Holland, Amsterdam, 1982 ).Google Scholar
  55. 55.
    B.G. Barisas, M.D. Leuther, Biophys. Chem. 10: 221 (1979).CrossRefGoogle Scholar
  56. 56.
    F. Lanni, D.L. Taylor, and B.R. Ware, Biophys. J. 35: 351 (1981).CrossRefGoogle Scholar
  57. 57.
    J.W. Wojcieszyn, R.A. Schlegel, E-S. Wu, and K. Jacobson, Proc. Natl. Acad. Sci. (USA) 78: 4407 (1981).ADSCrossRefGoogle Scholar
  58. 58.
    M. Schindler, D.E. Koppel, and M.P. Sheetz, Proc. Natl. Acad. Sci. (USA), 77: 1457 (1980).ADSCrossRefGoogle Scholar
  59. 59.
    M. Schindler, M.J. Osborn, and D.E. Koppel, Nature 283: 346 (1980).ADSCrossRefGoogle Scholar
  60. 60.
    D.E. Koppel, J. Supramol. Struct. 17: 61 (1981).CrossRefGoogle Scholar
  61. 61.
    E.L. Elson, and W.W. Webb, Ann. Rev. Biophys. Bioeng. 4: 311 (1975).CrossRefGoogle Scholar
  62. 62.
    D. Magde, in “Chemical Relaxation in Molecular Biology”, I. Pecht, and R. Rigler, eds. (Springer-Verlag, Berlin, 1977 ) p. 43.CrossRefGoogle Scholar
  63. 63.
    E.L. Elson, and D. Magde, Biopolymers 13: 1 (1974).CrossRefGoogle Scholar
  64. 64.
    D. Magde, E.L. Elson, and W.W. Webb, Biopolymers 13: 29 (1974).CrossRefGoogle Scholar
  65. 65.
    D. Magde, W.W. Webb, and E.L. Elson, Biopolymers 17: 361 (1978).CrossRefGoogle Scholar
  66. 66.
    M. Ehrenberg, and R. Rigler, Chem. Phys. 4: 390 (1974).ADSCrossRefGoogle Scholar
  67. 67.
    S.R. Aragon, and R. Pecora, J. Chem. Phys. 64: 1791 (1976).ADSCrossRefGoogle Scholar
  68. 68.
    J.T. Yardley, and L.T Specht, Chem. Phys. Lett. 37: 543 (1976).ADSCrossRefGoogle Scholar
  69. 69.
    J. Borejdo, S. Putnam, and M.F. Morales, Proc. Natl. Acad. Sci. (USA) 76: 6346 (1979).ADSCrossRefGoogle Scholar
  70. 70.
    G. Feher, and M. Weissman, Proc. Natl. Acad. Sci. (USA) 70: 870(1973)Google Scholar
  71. 71.
    D.W. Schaefer, and B.J. Berne, Phys. Rev. Lett. 29: 475 (1972).ADSCrossRefGoogle Scholar
  72. 72.
    D.W. Schaefer, and P.N. Pusey, Phys. Rev. Lett. 29: 843 (1972).ADSCrossRefGoogle Scholar
  73. 73.
    D.W. Schaefer, Science 180: 1293 (1973).ADSCrossRefGoogle Scholar
  74. 74.
    C.R. Cantor, and P.R. Schimmel, “Biophysical Chemistry, Part II: Techniques for the Study of Biological Structure and Function”, (W.H. Freeman, San Francisco, 1980 ).Google Scholar
  75. 75.
    A.T. Forrester, Am. J. Phys. 24: 192 (1956).ADSCrossRefGoogle Scholar
  76. 76.
    E. Jakeman, C.J. Oliver, and E.R. Pike, J. Phys. A. 3: L45 (1970).ADSCrossRefGoogle Scholar
  77. 77.
    D.E. Koppel, J. Appl. Phys. 42: 3216 (1971).ADSCrossRefGoogle Scholar
  78. 78.
    D.E. Koppel, Phys. Rev. A. 10: 1938 (1974).ADSCrossRefGoogle Scholar
  79. 79.
    P.F. Fahey, D.E. Koppel, L.S. Barak, D.E. Wolf, E.L. Elson, and W.W. Webb, Science 195: 305 (1977).ADSCrossRefGoogle Scholar
  80. 80.
    P.J. Sims, A.S. Waggoner, C.H. Wang, and J.F. Hoffman, Biochemistry 13: 3315 (1974).CrossRefGoogle Scholar
  81. 81.
    M. Weissman, H. Schindler, and G. Feher, Proc. Natl. Acad. Sci. (USA) 73: 2776 (1976).ADSCrossRefGoogle Scholar
  82. 82.
    M.L. Thompson, and D. Axelrod, Biophys. J. 37: 17a (1982).Google Scholar
  83. 83.
    N.O. Petersen, E.L. Elson, and D.C. Johnson, unpublished.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Dennis E. Koppel
    • 1
  1. 1.Department of BiochemistryUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations