The Diffusion of Compact Macromolecules Through Biological Gels

  • D. B. Sellen
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 59)


Experimental procedures for determining diffusion coefficients of compact macromolecules within biological gels and partition coefficients between gels and surrounding solutions are described. Results are presented for dextran fractions diffusing within calcium alginate and agarose gels. A gel concentration — hydrodynamic diameter superposition principle is shown to apply, and a method for calculating the molecular weight per unit length of the fibrous gel structure from the results is discussed, together with the significance of the measured partition coefficients.


Autocorrelation Function Hydrodynamic Diameter Calcium Alginate Laser Light Scattering Rayleigh Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Tanaka, O. Hocker, and G. B. Benedeck, J. Chem. Phys. 59: 5151 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    T. Tanaka, S. Ishiwata, and C. Ishimoto, Phys. Rev. Letters 38: 771 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    J. P. Munch, S. Candau, R. Duplessix, C. Picot, J. Herz, and H. Benoit, J. Polym. Sci. Polym. Phys. Ed. 14:1097 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    J. P. Munch, S. Candau, and G. Hild, J. Polym. Sci. Polym. Phys. Ed. 15:11 (1977).Google Scholar
  5. 5.
    J. P. Munch, S. Candau, J. Herz, and G. Hild, J. Phys. (Paris) 38: 971 (1977).CrossRefGoogle Scholar
  6. 6.
    J. P. Munch, P. Lemaréchal, S. Candau, and J. Herz, J. Phys. (Paris), 38: 1499 (1977).CrossRefGoogle Scholar
  7. 7.
    E. Geissler and A. M. Hecht, J. Phys. (Paris), 39: 955 (1978).CrossRefGoogle Scholar
  8. 8.
    S. J. Candau, C. Y. Young, T. Tanaka, P. Lemaréchal, and J. Bastide, J. Chem. Phys. 70: 4694 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    S. Candau, J. P. Munch, and G. Hild, J. Phys. (Paris), 41: 1031 (1980).CrossRefGoogle Scholar
  10. 10.
    W. Mackie, D. B. Seilen, and J. Sutcliffe, J. Polym. Sci. Polym. Symp. 61: 191 (1977).CrossRefGoogle Scholar
  11. 11.
    W. Mackie, D. B. Seilen, and J. Sutcliffe, Polymer 19: 9 (1978).CrossRefGoogle Scholar
  12. 12.
    D. B. Seilen, Polymer 19: 1110 (1978).CrossRefGoogle Scholar
  13. 13.
    P. Y. Key, and D. B. Seilen, J. Polym. Sci. Polym. Phys. Ed. 20:659 (1982).Google Scholar
  14. 14.
    A. Amsterdam, Z. Er El, and S. Shaltiel, Arch. Biochem. & Biophys. 171: 673 (1975).Google Scholar
  15. 15.
    O. Smidsrød and O. Skipnes, Norwegian Inst. Seaweed Research Report 34: 44 (1973).Google Scholar
  16. 16.
    S. L. Brenner, R. A. Gelman, and R. Nossal, Macromolecules 11: 202 (1978).ADSCrossRefGoogle Scholar
  17. 17.
    A. G. Ogston, B. N. Preston, and J. D. Wells, Proc. R. Soc. London 333: 297 (1973).ADSCrossRefGoogle Scholar
  18. 18.
    T. C. Laurent and A. Pietruszkiewicz, Biochim. Biophys. Acta 49: 258 (1961).Google Scholar
  19. 19.
    T. C. Laurent, I. Bjork and A. Pietruszkiewicz, Biochim. Biophys. Acta 78: 351 (1963).Google Scholar
  20. 20.
    D. B. Seilen, Polymer 14: 359 (1973).CrossRefGoogle Scholar
  21. 21.
    D. E. Koppell, J. Chem. Phys. 57: 4814 (1972).ADSCrossRefGoogle Scholar
  22. 22.
    A. G. Ogston, Trans. Far. Soc. 54: 1754 (1958).CrossRefGoogle Scholar
  23. 23.
    E. R. Morris, D. A. Rees, D. Thom, and J. Boyd, Carbohydrate Research 66: 145 (1978).CrossRefGoogle Scholar
  24. 24.
    S. Arnott, A. Fulmer, W. E. Scott, I. C. M. Dea, R. Moorhouse and D. A. Rees, J. Mol. Biol. 90: 269 (1974).CrossRefGoogle Scholar
  25. 25.
    A. Hayashi, K. Kinoshita and M. Kuwano, Polymer Journal 9: 219 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • D. B. Sellen
    • 1
  1. 1.Astbury Department of BiophysicsThe UniversityLeedsUK

Personalised recommendations