Strategies Centered on HPLC

  • G. G. Skellern
Part of the Methodological Surveys in Biochemistry and Analysis book series (MSBA, volume 12)


The choice of an HPLC system will depend on its application and on the nature of the metabolites to be measured. Normal-phase (NP) chromatography is limited to the measurement of drugs whose physico-chemical properties are similar to the parent drug, whereas reverse-phase (RP) chromatography in its various forms has made possible the simultaneous measurement of metabolites varying widely in pK a , lipophilicity and polarity. Either alone or in combination with other chromatographic techniques, HPLC has aided the isolation of some polar metabolites which may be difficult to isolate from biological material. In contrast with other types of chromatography, thein vitroformation of metabolites can be monitored directly by HPLC, with minimal sample preparation. Thus HPLC will aid the study of enzyme kinetics and reaction mechanisms.


Retention Index Polar Metabolite Clofibric Acid Sulphate Conjugate Minimal Sample Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 1 References

  1. 1.
    Skellern, G.G. (1981)Analyst106, 1071–1075.CrossRefGoogle Scholar
  2. 2.
    Several authors (1980)J. Chromatog. Sci. 18, 393–486.Google Scholar
  3. 3.
    Several authors (1980)J. Chromatog. Sci. 18, 487–582.Google Scholar
  4. 4.
    Allan, R.J., Goodman, H.T. & Watson, T.R. (1980) J. Chromatog. 183, 311–319.Google Scholar
  5. 5.
    Knox, J.H. & Jurand, J. (1977)J. Chromatog. I42, 651–670.CrossRefGoogle Scholar
  6. 6.
    Knox, J.H. & Jurand, J. (1978)J. Chromatog. 149, 297–312.CrossRefGoogle Scholar
  7. 7.
    Buckpitt, A.R., Rollins, D.E., Nelson, S.D., Franklin, R.B. & Mitchell, J.R. (1977)Anal. Biochem. 83, 168–177CrossRefGoogle Scholar
  8. 8.
    Roth, W., Beschke, K., Jauch, R., Zimmer, A. & Koss, F.W. (1981)J. Chromatog. 222, 13–22.CrossRefGoogle Scholar
  9. 9.
    Eggers, N.J. & Doust, K. (1981)J. Pharm. Pharmacol. 33, 123–124.CrossRefGoogle Scholar
  10. 10.
    Veenendael, J.R. & Meffin, P.J. (1981)J. Chromatog. 223, 147–154.CrossRefGoogle Scholar
  11. 11.
    Hignite, C.E., Tschanz, C., Lemons, S., Wiese; H., Azarnoff, D.L. & Huffman, D.H. (1981)Life Sci. 28, 2077–2081.CrossRefGoogle Scholar
  12. 12.
    Ruelius, H.W., Tio, C.O., Knowles, J.A., McHugh, S.L., Schillings, R.T. & Sisenwine, S.F. (1979)Drug Metab. Disp. 7, 40–43Google Scholar
  13. 13.
    Rhodes, J.C. & Houston, J.B. (1981)Xenobiotica11, 63–70.CrossRefGoogle Scholar
  14. 14.
    Bayer, E., Albert, K., Nieder, M., Grom, E. & Keller, T. (1979)J. Chromatog. 186, 497–507.CrossRefGoogle Scholar
  15. 15.
    Kirby, D.P., Vouros, P., Karger, B.L., Hidy, B. & Petersen, B. (1981)J. Chromatog. 203, 139–154.CrossRefGoogle Scholar
  16. 16.
    Lee, S.H., Field, L.R., Howald, W.N. & Trager, W.F. (1981)Anal. Chem. 53, 467–471.CrossRefGoogle Scholar
  17. 17.
    Tawa, R., Kito, M. & Hirose, S. (1981)Chem. Lett. 6, 745–748.CrossRefGoogle Scholar
  18. 18.
    Knight, B.I. & Skellern, G.G. (1980)J. Chromatog. 192, 247–249.CrossRefGoogle Scholar
  19. 19.
    Baker, J.K. & Ma, C.Y. (1979)J. Chromatog. 169, 107–115.CrossRefGoogle Scholar
  20. 20.
    Baker, J.K. (1981)J. Liq. Chromatog. 4, 271–278.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • G. G. Skellern
    • 1
  1. 1.Drug Metabolism Research Unit Department of Pharmaceutical ChemistryUniversity of StrathclydeGlasgowUK

Personalised recommendations