Oxidative Metabolism of Leukocytes and Its Relationship to Bactericidal Activity

  • Lawrence R. DeChatelet
  • Pamela S. Shirley
  • Linda C. McPhail
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 162)


During the course of phagocytosis, normal polymorphonuclear leukocytes undergo remarkable alterations in oxidative metabolism which are insensitive to cyanide or azide. These events, collectively referred to as the respiratory burst, are listed in Table 1. Although neutrophils are equipped with a variety of bactericidal weapons, including non-oxidative processes such as hydrolytic enzymes and cationic proteins, several lines of evidence suggest that the respiratory burst plays a major role in the killing of
Table 1

The Respiratory Burst

I. Increased oxygen consumption

II. Increased glucose oxidation via the hexose monophosphate shunt

III. Generation of hydrogen peroxide

IV. Generation of superoxide anion

V. Generation of chemiluminescence

VI. Reduction of tetrazolium dyes

many bacteria. Bacteria are ingested well under anaerobic conditions but most are not killed efficiently in this situation (1). Further, cells obtained from patients with chronic granulomatous disease fail to elicit a normal respiratory burst and are unable to adequately kill many types of microorganisms (2). Patients with this disease are highly susceptible to severe pyogenic bacterial infections which are frequently life-threatening.


NADPH Oxidase Oxidative Metabolism Respiratory Burst Chronic Granulomatous Disease H202 Production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McRipley, R. J., and Sbarra, A.J. (1967). J. of Bacteriol. 94:1417.Google Scholar
  2. 2.
    Holmes, B., Page, A.R., and Good, R.A. (1967). J. Clin. Invest. 46:1422.PubMedCrossRefGoogle Scholar
  3. 3.
    Klebanoff, S.J. (1967). J. Exp. Med. 126:1063.PubMedCrossRefGoogle Scholar
  4. 4.
    Strauss, R.R., Paul, B.B., Jacobs, A.A., and Sbarra, A.J. (1971). Infect. Immun. 3:595.PubMedGoogle Scholar
  5. 5.
    Selvaraj, R.J., Paul, B.B., Strauss, R.R., Jacobs, A.A., and Sbarra, A.J. (1974). Infect. Immun. 9:255.PubMedGoogle Scholar
  6. 6.
    Thomas, E.L. (1979). Infect. Immun. 23:522.PubMedGoogle Scholar
  7. 7.
    Klebanoff, S.J., and Hamon, C.B. (1972). J. Reticuloendothel. Soc. 12:170.PubMedGoogle Scholar
  8. 8.
    Shohet, S.B., Pitt, J., Baehner, R.L., and Poplack, D.G. (1974). Infect. Immun. 10:1321.PubMedGoogle Scholar
  9. 9.
    Miller, T.E. (1969). J. Bacteriol. 98:949.PubMedGoogle Scholar
  10. 10.
    Stankova, L., Gerhardt, N.B., Nagel, L.,and Bigley, R.H. (1975) Infect. Immun. 12:252.PubMedGoogle Scholar
  11. 11.
    Babior, B.M., Kipnes, R.S., and Curnutte, J.T. (1973). J. Clin. Invest. 52:421.CrossRefGoogle Scholar
  12. 12.
    Allen, R.C., Stjernholm, R.L., and Steele, R.H. (1972). Biochem. and Biophys. Res. Commun. 47:679.CrossRefGoogle Scholar
  13. 13.
    Rosen, H., and Klebanoff, S.J. (1979). J. Clin. Invest. 64: 1725.PubMedCrossRefGoogle Scholar
  14. 14.
    Johnston, R.B., Jr., Keele, B.B., Jr., Misra, H.P., Lehmeyer, J.E., Webb, L.W., Baehner, R.L. and Rajagopalan, K.V. (1975) J. Clin. Invest. 55:1357.PubMedCrossRefGoogle Scholar
  15. 15.
    Babior, B.M., Curnutte, J.T., and McMurrich, B.J. (1976). J. Clin. Invest. 58:989.PubMedCrossRefGoogle Scholar
  16. 16.
    Curnutte, J.T., Karnovsky, M.L., and Babior, B.M. (1976). J. Clin. Invest. 57:1059.PubMedCrossRefGoogle Scholar
  17. 17.
    DeChatelet, L.R., McPhail, L.C., Mullikin, D., and McCall, C.E (1975). J. Clin. Invest. 55:714.PubMedCrossRefGoogle Scholar
  18. 18.
    Iverson, D., DeChatelet, L.R., Spitznagel, J.K., and Wang, P. (1977). J. Clin. Invest. 59:282.PubMedCrossRefGoogle Scholar
  19. 19.
    DeChatelet, L.R., McPhail, L.C., Mullikin, D., and McCall, C.E. (1974). Infect. Immun. 10:528.PubMedGoogle Scholar
  20. 20.
    Baehner, R.L.., and Karnovsky, M.L. (1968). Science 162:1277.PubMedCrossRefGoogle Scholar
  21. 21.
    Segal, A.W., and Peters, T.J. (1977). Clin. Sci. and Mol. Med. 52:429.Google Scholar
  22. 22.
    Patriarca, P., Cramer, R., Moncalvo, S., Rossi, F., and Romeo, D. (1971). Arch. of Biochem. and Biophys. 145:255.CrossRefGoogle Scholar
  23. 23.
    Hohn, D.C., and Lehrer, R.I. (1975). J. Clin. Invest. 55:707.PubMedCrossRefGoogle Scholar
  24. 24.
    DeChatelet, L.R., Shirley, P.S., McPhail, L.C., Iverson, D.B., and Doellgast, G.J. (1978). Infect. Immun. 20:398.PubMedGoogle Scholar
  25. 25.
    DeChatelet, L.R., Shirley, P.S., and Johnston, R.B., Jr. (1976). Blood 47:545.PubMedGoogle Scholar
  26. 26.
    Iyer, G.Y.N., Islam, D.M.F., and Quastel, J.H. (1961). Nature 192:535.CrossRefGoogle Scholar
  27. 27.
    Patriarca, P., Dri, P., Kakinuma, K., Tedesco, F., and Rossi, F. (1975). Biochim. et Biophys. Acta 285:380.Google Scholar
  28. 28.
    Bellavite, P., Berton, C., and Dri, P. (1980). Biochim.et Biophys. Acta 591:434.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Lawrence R. DeChatelet
    • 1
  • Pamela S. Shirley
    • 1
  • Linda C. McPhail
    • 1
  1. 1.The Department of BiochemistryThe Bowman Gray School of MedicineWinston-SalemUSA

Personalised recommendations