Crystallographic Studies of the Protein Biosynthesis System

  • Anders Liljas
  • Marie Leijonmarck


The protein biosynthesis system provides a very good illustration of the difficulties involved in studying the structure and function of a supramolecular assembly. The complexity of the system and the lack of appropriate experimental tools have forced those in the field to use methods which are less than ideally suited for the problems, as well as to develop new ones.


Ribosomal Protein Elongation Factor Ribosomal Subunit Protein Biosynthesis Crystallographic Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M.J., Liljas, A., and Rossmann, M.G., 1973, Functional anion binding sites in dogfish M4 lactate dehydrogenase, J. Mol. Biol., 76:519.CrossRefGoogle Scholar
  2. Alakhov, Yu., B. and Ovchinnikov, Yu. A., 1981, Study of the structure and structural — functional properties of the elongation factor G from E. coli, Poster abstract from Seventh EMBO Annual Symposium.Google Scholar
  3. Appelt, K., Dijk, J., and Epp, D., 1979, The crystallization of protein BL17 from the 50S ribosomal subunit of Bacillus stearothermophilus, FEBS Letters, 103:66.CrossRefGoogle Scholar
  4. Appelt, K., Dijk, J., Reinhardt, R., Sanhuesa, S., White, S.W., Wilson, K.S., and Yonath, A., 1981, The crystallization of ribosomal proteins from the 50S subunit of the Escherichiacoli and Bacillus stearothermophilus ribosome, J. Biol. Chem., 256:11787.Google Scholar
  5. Arnone, A., 1972, X-ray diffraction study of binding of 2,3-diphos-phoglycerate to human deoxyhaemoglobin, Nature, 237:146.ADSCrossRefGoogle Scholar
  6. Banner, D.W., Bloomer, A.C., Petsko, G.A., Phillips, D.C., Pogson, C.I., Wilson, I.A., Corran, P.H., Fürth, A.J., Milman, J.D., Offord, R.E., Priddle, J.D., and Waley, S.G., 1975, Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 Å resolution using amino acid sequence data, Nature, 255:609.ADSCrossRefGoogle Scholar
  7. Behlke, J., and Gudkov, A.T., 1980, Interaction between the ribosomal proteins L7/L12 and L10 as L7/L12-L10 and L11 from Escherichia coli, Studia Biophysica, 81:169.Google Scholar
  8. Blake, C.C.F., Geisow, M.J., Swan, I.D.A., Rerat, C., and Rerat, B., 1974, Structure of human plasma prealbumin at 2.5 Å resolution. A preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding, J. Mol. Biol., 88:1.CrossRefGoogle Scholar
  9. Boublik, M., Hellmann, W., and Kleinschmidt, A.K., 1977, Size and structure of E. coli ribosomes by electron microscopy, Cytobiologie, 14:293.Google Scholar
  10. Boublik, M., Hellmann, W., and Roth, H.E., 1976, Localization of ribosomal protein L7/L12 in the 50S subunit of Escherichia coli ribosome by electron microscopy, J. Mol. Biol., 107:479.CrossRefGoogle Scholar
  11. Brändén, C.-I., Eklund, H., Nordström, B., Boiwe, T., Söderlund, G., Zeppezauer, E., Ohlsson, I., and Åkesson, Å., 1973, Structure of liver alcohol dehydrogenase at 2.9 Å resolution, Proc. Nat. Acad. Sci. USA, 70:293.CrossRefGoogle Scholar
  12. Buehner, M., Ford, G.C., Moras, D., Olsen, K.W., and Rossmann, M.G., 1974, Three-dimensional structure of D-glyceraldehyde-3 phosphate dehydrogenase, J. Mol. Biol., 90:25.CrossRefGoogle Scholar
  13. Byers, B., 1971, Chick embryo ribosome crystals: analysis of bonding and functional activity in vitro, Proc. Nat. Acad. Sci. USA, 68:440.ADSCrossRefGoogle Scholar
  14. Clark, M.W., Hammons, M., Langer, M., and Lake, J.A., 1979, Helical arrays of Escherichia coli small ribosomal subunits produced in vitro, J. Mol. Biol., 135:507.CrossRefGoogle Scholar
  15. Crowther, R.A., and Klug, A., 1975, Structural analysis of macro-molecular assemblies by image reconstruction from electron micrographs, Ann. Rev. Biochem., 44:161.CrossRefGoogle Scholar
  16. Dabbs, E.R., 1977, A spectomycin dependent mutant of Escherichia coli, Mol. Gen. Genet., 151:261.ADSCrossRefGoogle Scholar
  17. Dabbs, E.R., 1979, Selection for Escherichia coli mutants with proteins missing from the ribosome, J. Bact., 140:734.Google Scholar
  18. Dabbs, E.R., Ehrlich, R., Hasenbank, R., Schroeter, B.-H., Stoffler-Meilicke, M., and Stöffler, G., 1981, Mutants of Escherichia coli lacking ribosomal protein L1, J. Mol. Biol., 149:553.CrossRefGoogle Scholar
  19. Dijk, J., Garrett, R.A., and Müller, R., 1979, Studies on the binding of the ribosomal protein complex L7/L12-L10 and protein L11 to the 5′-one third of 23S RNA: a functional centre of the 50S subunit, Nucl. Acids Res., 6:2717.CrossRefGoogle Scholar
  20. Dijk, J. and Littlechild, J., 1979, Purification of ribosomal proteins from Escherichia coli under nondenaturing conditions, Methods in Enzymology, 59:481.CrossRefGoogle Scholar
  21. Duffy, L.K., Gerber, L., Johnson, A.E., and Miller, D.L., 1981, Identification of a histidine residue near the aminoacyl transfer ribonucleic acid binding site of elongation factor Tu, Biochemistry, 20:4663.CrossRefGoogle Scholar
  22. Duisterwinkel, F.J., De Graaf, J.M., Kraal, B., and Bosch, L., 1981, A kirromycin resistant elongation factor EF-Tu from Escherichia coli contains a threonine instead of an alanine residue in position 375, FEBS Lett., 131:89.CrossRefGoogle Scholar
  23. Expert-Bezançon, A., Barritault, D., Milet, M., and Hayes, D.H., 1976, Close proximity of Escherichia coli 50S subunit proteins L7/L12 and L10 and Lll, J. Mol. Biol., 108:781.CrossRefGoogle Scholar
  24. Fahnestock, S.R., Strycharz, W.A., and Marquis, D.M., 1981, Immunochemi cal evidence of homologies among 50S ribosomal proteins of Bacillus stearothermophilus and Escherichia coli, J. Biol. Chem., 256:10111.Google Scholar
  25. Garrett, R.A., Douthwaite, S., and Noller, H.F., 1981, Structure and role of 5S RNA-protein complexes in protein biosynthesis, TIBS, 6:137.Google Scholar
  26. Gast, W.H., Kabsch, W., Wittinghofer, A., and Lebermann, R., 1977, Crystals of a large tryptic peptide (fragment A) of elongation factor EF-Tu from Escherichia coli, FEBS Letters, 74:88.CrossRefGoogle Scholar
  27. Gast, W.H., Lebermann, R., Schulz, G.E., and Wittinghofer, A., 1976, Crystals of partially trypsin-digested elongation factor Tu, J. Mol. Biol., 106:943.CrossRefGoogle Scholar
  28. Glick, B.R., 1977, The role of Escherichia coli ribosomal proteins L7 and L12 in peptide chain propagation, FEBS Lett., 73:1.CrossRefGoogle Scholar
  29. Gudkov, A.T. and Behlke, J., 1978, The N-terminal sequence protein of L7/L12 is responsible for its dimerization, Eur. J. Biochem., 90:309.CrossRefGoogle Scholar
  30. Gudkov, A.T., Tumanova, L.G., Gongadze, G.M., and Bushnev, V.N., 1980, Role of different regions of ribosomal proteins L7 and L10 in their complex formation and in the interaction with the ribosomal 50S subunit, FEBS Lett., 109:34.CrossRefGoogle Scholar
  31. Hamel, E., Koka, M., and Nakamoto, T., 1972, Requirement of an Escherichia coli 50S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate, J. Biol. Chem., 247:805.Google Scholar
  32. Hardy, S.J.S., 1975, The stoichiometry of the ribosomal proteins of Escherichia coli, Mol. Gen. Genet., 140:253.CrossRefGoogle Scholar
  33. Henderson, R., and Unwin, P.N.T., 1975, Three-dimensional model of purple membrane obtained by electron microscopy, Nature, 257:28.ADSCrossRefGoogle Scholar
  34. Highland, J.H., and Howard, G.A., 1975, Assembly of ribosomal proteins L7, L10, L11 and L12 on the 50S subunit of Escherichia coli, J. Biol. Chem., 250:831.Google Scholar
  35. Itoh, T., 1981, Primary structure of an acidic ribosomal protein from Micrococcus lysodeikticus, FEBS Lett., 127:67.CrossRefGoogle Scholar
  36. Itoh, T., Sugiyama, M., and Higo, K., 1981, The primary structure of an acidic ribosomal protein from Streptomyces griseus, Biochim. Biophys. Acta, in press.Google Scholar
  37. Ivell, R., Fasano, O., Crechet, J.B., and Parmeggiani, A., 1981, Characterization of a kirromycin-resistant elongation factor Tu from Escherichia coli, Biochemistry, 20:1355.CrossRefGoogle Scholar
  38. Jelenc, P.C., 1980, Rapid purification of highly active ribosomes from Escherichia coli, Anal. Biochem., 105:369.CrossRefGoogle Scholar
  39. Jelenc, P.C., and Kurland, C.G., 1979, Nucleotide triphosphate regeneration decreases the frequency of translation errors, Proc. Nat. Acad. Sci. USA, 76:3174.ADSCrossRefGoogle Scholar
  40. Jonák, J., Rychlík, I., Smrt, J., and Holý, A., 1979, The binding site for the 3′-terminus of aminoacyl-tRNA in the molecule of elongation factor Tu from Escherichia coli, FEBS Lett., 98:329.CrossRefGoogle Scholar
  41. Jones, M.D., Petersen, T.E., Nielsen, K.M., Magnusson, S., Sottrup-Jensen, L., Gausing, K., and Clark, B.F.C., 1980, The complete amino-acid sequence of elongation factor Tu from Escherichia coli, Eur. J. Biochem., 108:507.CrossRefGoogle Scholar
  42. Jurnak, F., McPherson, A., Wang, A.H.J., Rich, A., 1980, Biochemical and structural studies of the tetragonal crystalline modification of the Escherichia coli elongation factor Tu, J. Biol. Chem., 255:6751.Google Scholar
  43. Jurnak, F., Rich, A., and Miller, D., 1977, Preliminary X-ray diffraction data for tetragonal crystals of trypsinized Escherichia coli elongation factor, J. Mol. Biol., 115:103.CrossRefGoogle Scholar
  44. Kabsch, W., Gast, W.H., Schulz, G.E., Lebermann, R., 1977, Low resolution structure of partially trypsin-degraded polypeptide elongation factor, EF-Tu, from Escherichia coli, J. Mol. Biol., 117:999.Google Scholar
  45. Kahan, L., Winkelmann, D.A., and Lake, J.A., 1981, Ribosomal proteins S3, S6, S8 and S10 of Escherichia coli localized on the external surface of the small subunit by immune electron-microscopy, J. Mol. Biol., 145:193.CrossRefGoogle Scholar
  46. Kastner, B., Stöffler-Meilicke, M., and Stöffler, G., 1981, Arrangement of the subunits in the ribosome of Escherichia coli: demonstration by immunoelectron microscopy, Proc. Nat. Acad. Sci. USA, 78:6652.ADSCrossRefGoogle Scholar
  47. Kaziro, Y., 1978, The role of guanosine 5′-triphosphate in polypeptide chain elongation, Biochim. Biophys. Acta, 505:95.Google Scholar
  48. Kenny, J.W., and Traut, R.R., 1979, Identification of fifteen neighbouring protein pairs in the Escherichia coli 50S ribosomal subunit crosslinked with 2-iminothiolane, J. Mol. Biol., 127:243.CrossRefGoogle Scholar
  49. Kingsbury, E.W., and Voelz, H., 1969, Induction of helical arrays of ribosomes by vinblastine sulfate in Escherichia coli, Science, 165-768.Google Scholar
  50. Koteliansky, V.E., Domogatsky, S.P., and Gudkov, A.T., 1978, Dimer state of protein L7/L12 and EF-G dependent reactions on ribosomes, Eur. J. Biochem., 90:319.CrossRefGoogle Scholar
  51. Koteliansky, V.E., Domogatsky, S.P., Gudkov, A.T., and Spirin, A.S., 1977, Elongation factor-dependent reactions on ribosomes deprived of proteins L7 and L12, FEBS Lett., 73:6.CrossRefGoogle Scholar
  52. Kurland, C.G., 1982, Translational accuracy in vitro, in press.Google Scholar
  53. Lake, J.A., 1976, Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes, J. Mol. Biol., 105:131.CrossRefGoogle Scholar
  54. Lake, J.A., 1978, Electron microscopy of specific proteins: three-dimensional mapping of ribosomal proteins using antibody labels, in: “Advanced Techniques in Biological Electron Microscopy II”, J.K. Koehler, ed., Springer Verlag, Berlin, Heidelberg, p. 173.CrossRefGoogle Scholar
  55. Lake, J.A., 1981, The ribosome, Scientific American, 245:56.CrossRefGoogle Scholar
  56. Lake, J. A., Nonomura, Y., and Sabatini, D.D., 1974, Ribosome structure as studied by electron microscopy, in: “Ribosomes”, M. Nomura, A. Tissiere, P. Lengyel, eds., Cold Spring Harbor Laboratory, Long Island, N.Y., p. 543.Google Scholar
  57. Lake, J.A., and Slayter, H.S., 1972, Three-dimensional structure of the chromatoid body helix of Entamoeba invadens, J. Mol. Biol., 66:271.CrossRefGoogle Scholar
  58. Laursen, R.A., L’Italien, J.J., Nagarkatti, S., and Miller, D.L., 1981, The amino acid sequence of elongation factor Tu of Escherichia coli. The complete sequence, J. Biol. Chem., 256:8102.Google Scholar
  59. Labermann, R., Schulz, G.E., and Suck, D., 1981. Crystallization and preliminary X-ray diffraction data of the EF-Tu·EF-Ts (EF-T) complex of Escherichia coli, FEBS Lett., 124:279.CrossRefGoogle Scholar
  60. Lebermann, R., Wittinghofer, A., and Schulz, G.E., 1976, Polymorphism in crystalline elongation factor Tu·GDP from Escherichia coli, J. Mol. Biol., 106:951.CrossRefGoogle Scholar
  61. Lee, C.C., Cantor, C.R., and Wittmann-Liebold, B., 1981, The number of copies of ribosome-bound proteins L7 and L12 required for protein synthesis activity, J. Biol. Chem., 256:41.Google Scholar
  62. Leijonmarck, M., Eriksson, S., and Liljas, A., 1980, Crystal structure of a ribosomal component at 2.6 A resolution, Nature, 286:824.ADSCrossRefGoogle Scholar
  63. Leijonmarck, M., and Liljas, A., 1982, Manuscript in preparation.Google Scholar
  64. Liljas, A., 1982, Structural studies of ribosome, Progr. Biophys. Mol. Biol., in press.Google Scholar
  65. Liljas, A., Eriksson, S., Donner, D., and Kurland, C.G., 1978, Isolation and crystallization of stable domains of the protein L7/L12 from Escherichia coli ribosomes, FEBS Letters, 88:300.CrossRefGoogle Scholar
  66. Liljas, A., and Kurland, C.G., 1976, Crystallization of ribosomal protein L7/L12 from Escherichia coli, FEBS Lett., 71:130.CrossRefGoogle Scholar
  67. Liljas, A., and Newcomer, M.E., 1981, Purification and crystallization of a protein complex from Bacillus stearothermophilus ribosomes, J. Mol. Biol., 153, in press.Google Scholar
  68. Maassen, J.A. and Möller, W., 1974, Identification by photo-affinity labelling of the proteins in Escherichia coli ribosomes involved in elongation factor G-dependent GDP binding, Proc. Nat. Acat. Sci. USA, 71:1277.ADSCrossRefGoogle Scholar
  69. Maassen, J.A., and Möller, W., 1978, Elongation factor G-dependent binding of a photoreactive GTP analogue of Escherichia coli ribosomes result in labelling of protein L11, J. Biol. Chem., 253:2777.Google Scholar
  70. Maassen, J.A., and Möller, W., 1981, Photochemical cross-linking of elongation factor G to 70S ribosomes from Escherichia coli by 4-(6-formyl-3-azidophenoxy)-butyrimidate, Eur. J. Biochem., 115:279.CrossRefGoogle Scholar
  71. Maassen, J.A., Shop, E.N., and Möller, W., 1981, Structural analysis of ribosomal protein L7/L12 by the heterobifunctional crosslinker 4-(6-formyl-3-azidophenoxy)-butyrimidate, Biochemistry, 20:1020.CrossRefGoogle Scholar
  72. Marquis, D.M., and Fahnestock, S.R., 1980, Stoichiometry and structure of a complex of acidic ribosomal proteins, J. Mol. Biol., 142:161.CrossRefGoogle Scholar
  73. Marquis, D.M., Fahnestock, S.R., Henderson, E., Woo, D., Schwinge, S., Clark, M.W., and Lake, J.A., 1981, The L7/L12 stalk, a conserved feature of the procaryotic ribosome, is attached to the large subunit through its N-terminus, J. Mol. Biol., 150:121.CrossRefGoogle Scholar
  74. Matheson, A.T., Möller, W., Amons, R., and Yaguchi, M., 1980, Comparative studies on the structure of ribosomal proteins, with emphasis on the alanine-rich acidic ribosomal, “A” protein, in: “Ribosome Structure, Function and Genetics”, G. Chambliss, G.R. Craven, J. Davies, K. Davis, L. Kahan, and M. Nomura, eds., University Park Press, Baltimore, p. 297.Google Scholar
  75. McPherson, A., Jr., 1976, The growth and preliminary investigation of protein and nucleic acid crystals for X-ray diffraction analysis, Methods of Biochemical Analysis, 23:249.CrossRefGoogle Scholar
  76. Morikava, K., La Cour, T.F.M., Nyborg, J., Rasmussen, K.M., Miller, D.L., and Clark, B.F.C., 1978, High resolution X-ray crystallographic analysis of a modified form of the elongation factor Tu: Guanosine Diphosphate complex, J. Mol. Biol., 125:325.CrossRefGoogle Scholar
  77. O’Brien, L., Shelly, K., Towfighi, J., and McPherson, A., 1980, Crystalline ribosomes are present in brains from senile humans, Proc. Nat. Acad. Sci. USA, 77:2260.ADSCrossRefGoogle Scholar
  78. Osterberg, R., Sjöberg, B., Liljas, A., and Pettersson, I., 1976, Small-angle X-ray scattering and crosslinking study of the proteins L7/L12 from Escherichia coli ribosomes, FEBS Lett., 66:48.CrossRefGoogle Scholar
  79. Osterberg, R., Sjöberg, B., Pettersson, I., Liljas, A., and Kurland, C.G., 1977, Small-angle X-ray scattering study of the protein complex of L7/L12 and L10 from Escherichia coli ribosomes, FEBS Lett., 73:22.CrossRefGoogle Scholar
  80. Pettersson, I., and Kurland, C.G., 1980, Ribosomal protein L7/L12 is required for optimal translation, Proc. Nat. Acad. Sci. USA, 77:4007.ADSCrossRefGoogle Scholar
  81. Pettersson, I., and Liljas, A., 1979, The stoichiometry and reconstitution of a stable protein complex from Escherichia coli ribosomes, FEBS Lett., 98:139.CrossRefGoogle Scholar
  82. Ramakrishnan, V.R., Yabuki, S., Sillers, I.-Y., Schindler, D.G., Engelman, D.M., and Moore, P.B., 1981, On the position of S6, S11 and S15 in the 30S ribosomal subunit of E. coli, J. Mol. Biol., in press.Google Scholar
  83. Reeke, G.N., Becker, J.W., and Edelman, G.M., 1975, The covalent and threedimensional structure of concanavalin A. IV. Atomic coordinates, hydrogen bonding and quaternary structure, J. Biol. Chem., 250:1525.Google Scholar
  84. Rossmann, M.G., and Argos, P., 1981, Protein folding, Ann. Rev. Biochem., 50:497.CrossRefGoogle Scholar
  85. Rossmann, M.G., Liljas, A., Brändén, C.I., and Banaszak, L.J., 1975, Evolutionary and structural relationships among dehydrogenases, in: “The Enzymes”, P.D. Boyer, ed., Academic Press, London, LL:61.Google Scholar
  86. Rubin, J.R., Morikawa, K., Nyborg, J., La Cour, T.F.M., Clark, B. F.C., and Miller, D.L., 1981, Structural features of the GDP binding site of elongation factor Tu from Escherichia coli as determined by X-ray diffraction, FEBS Lett., 129:177.CrossRefGoogle Scholar
  87. Schrier, P.I., and Möller, W., 1975, The involvement of 50S ribosomal protein L11 in the EF-G dependent GTP hydrolysis of E. coli ribosomes, FEBS Lett., 54:130.CrossRefGoogle Scholar
  88. Shatsky, I.N., Estafieva, A.G., Bystrova, T.F., Bogdanov, A.A., and Vasiliev, V.D., 1980, Topography of RNA in the ribosome: Location of the 3′-end of 5S RNA on the central protuberance of the 50S subunit, FEBS Lett., 121:97.CrossRefGoogle Scholar
  89. Sneden, D., Miller, D.L., Kim, S.H., and Rich, A., 1973, Preliminary X-ray analysis of the crystalline complex between polypeptide chain elongation factor Tu, and GDP, Nature, 241:530.ADSCrossRefGoogle Scholar
  90. Stark, M.J.R. and Cundliffe, E., 1979, On the biological role of ribosomal protein BM-L11 of Bacillus megaterium homologous with Escherichia coli ribosomal protein L11, J. Mol. Biol., 134:767.CrossRefGoogle Scholar
  91. Stoffler, G., Bald, R., Kastner, B., Lührmann, R., Stöffler-Meilicke, M., and Tischendorf, G., 1980a, Structural organization of the Escherichia coli ribosome and localization of functional domain, in: “Ribosomes. Structure, Function and Genetics”, G. Chambliss, G.R. Craven, J. Davies, K. Davis, L. Kahan, and M. Nomura, eds., University Park Press, Baltimore.Google Scholar
  92. Stöffler, G., Cundliffe, E., Stöffler-Meilicke, M., and Dabbs, E. R., 1980b, Mutants of Escherichia coli lacking ribosomal protein L11, J. Biol. Chem., 255:10517.Google Scholar
  93. Stöffler, G., and Stöffler-Meilicke, M., 1981, Structural organization of the Escherichia coli ribosomes and localization of functional domains, in: “International Cell Biology 1980–1981”, H.G. Schweiger, ed., Springer, New York, p. 93.CrossRefGoogle Scholar
  94. Steitz, T.A., Anderson, W.F., Fletterick, R.J., and Anderson, C.M., 1977, High resolution crystal structures of yeast hexokinase complexes with substrates, activators and inhibitors. Evidence for an allosteric control site, J. Biol. Chem., 252:4494.Google Scholar
  95. Strycharz, W.A., Nomura, M., and Lake, J.A., 1978, Ribosomal proteins L7/L12 localized at a single region of the large subunit by immune electron microscopy, J. Mol. Biol., 126:123.CrossRefGoogle Scholar
  96. Subramanian, A.R., 1975, Copies of proteins L7 and L12 and heterogeneity of the large subunit of Escherichia coli ribosome, J. Mol. Biol., 95:1.CrossRefGoogle Scholar
  97. Taddei, C., 1972, Ribosome arrangement during oogenesis of Lacerta sicula Raf., Exp. Cell. Res., 70:285.CrossRefGoogle Scholar
  98. Terhorst, C., Möller, W., Laursen, R., Wittmann-Liebold, B., 1973, The primary structure of an acidic protein from 50S ribosomes of Escherichia coli which is involved in GTP hydrolysis dependent on elongation factors G and T, Eur. J. Biochem., 34:138.CrossRefGoogle Scholar
  99. Tischendorf, G.W., Zeichhardt, H., and Stöffler, G., 1975, Architecture of the Escherichia coli ribosome as determined by immune electron microscopy, Proc. Nat. Acad. Sci. USA, 72:4820.ADSCrossRefGoogle Scholar
  100. Tokimatsu, H., Strycharz, W.A., and Dahlberg, A.E., 1981, Gel electrophoretic studies on ribosomal proteins L7/L12 and the Escherichia coli 50S subunit, J. Mol. Biol., 152:397.CrossRefGoogle Scholar
  101. Unwin, N., 1977, Three-dimensional model of membrane-bound ribosomes obtained by electron microscopy, Nature, 269:118.ADSCrossRefGoogle Scholar
  102. Unwin, N., 1979, Attachment of ribosome crystal to intracellular membranes, J. Mol. Biol., 132:69.CrossRefGoogle Scholar
  103. Van Agthoven, A.J., Maassen, J.A., Schrier, P.I., and Möller, W., 1975, Inhibition of EF-G dependent GTPase by an aminoterminal fragment of L7/L12, Biochem. Biophys. Res. Commun., 64:1184.CrossRefGoogle Scholar
  104. Weissbach, H., 1980, Soluble factors in protein synthesis, in: “Ribosomes. Structure, Function and Genetics”, G. Chambliss, G.R. Craven, J. Davies, K. Davis, L. Kahan, and M. Nomura, eds., University Park Press, Baltimore, p. 377.Google Scholar
  105. Wolf, H., Chinali, G., and Parmeggiani, A., 1974, Kirromycin, an inhibition of protein biosynthesis that acts on elongation factor Tu, Proc. Nat. Acad. Sci. USA, 71:4910.ADSCrossRefGoogle Scholar
  106. Yonath, A.E., Müssig, J., Tesche, B., Lorenz, S., Erdmann, V.A., and Wittmann, H.G., 1980, Crystallization of the large ribosomal subunits from Bacillus stearothermophilus, Biochem. Internat., 1:428.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Anders Liljas
    • 1
  • Marie Leijonmarck
    • 1
  1. 1.Institute of Molecular BiologyUppsala UniversityUppsalaSweden

Personalised recommendations