Advertisement

Abstract

Biological membranes are the supramolecular structures which define the boundary of the cell and its organelles, and which control communication between the exterior and interior. As such they constitute one of the basic organizing principles of biological organisms. In this chapter a review will be given of the overall compositional and structural features of biomembranes, which lead to their dynamic and functional properties. The structure of phospholipids and of integral membrane proteins will be described. Results on the rotational and translational mobility of membrane components will be discussed to indicate the dynamic nature of membrane structure and the possible functional role of membrane fluidity.

Keywords

Electron Spin Resonance Electron Spin Resonance Spectrum Spin Label Phosphatidyl Ethanolamine Lipid Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter 1

  1. Cherry, R.J., 1979, Rotational and lateral diffusion of membrane proteins, Biochim. Biophys. Acta, 559:289.Google Scholar
  2. Cone, R.A., 1972, Rotational diffusion of rhodopsin in the visual receptor membrane, Nature New Biol., 236:39.Google Scholar
  3. Elder, M., Hitchcock, P., Mason, R., and Shipley, G.G., 1977, A refinement analysis of the crystallography of the phospholipid, 1,2-dilauroyl-DL-phosphatidyl-ethanolamine, and some remarks on lipid-lipid and lipid-protein interactions, Proc. Roy. Soc. Lond. A, 354:157.ADSCrossRefGoogle Scholar
  4. Engelmann, D.M., Henderson, R., McLachlan, A.D., and Wallace, B. A., 1980, Path of the polypeptide in bacteriorhodopsin, Proc. Natl. Acad. Sci. USA, 77:2023.ADSCrossRefGoogle Scholar
  5. Hauser, H., Pascher, I., and Sundeil, S., 1980, Conformation of phospholipids. Crystal structure of lysophosphatidylcholine analogue, J. Mol. Biol., 137:249.CrossRefGoogle Scholar
  6. Henderson, R., and Unwin, P.N.T., 1975, Three-dimensional model of purple membrane obtained by electron microscopy, Nature (London), 257:28.ADSCrossRefGoogle Scholar
  7. Hitchcock, P.B., Mason, R., Thomas, K.M., and Shipley, G.G., 1974, Structural chemistry of 1,2-dilauroyl-DL-phosphatidylethanolamine: Molecular conformation and intermolecular packing of phospholipids, Proc. Natl. Acad. Sci. USA, 71:3036.ADSCrossRefGoogle Scholar
  8. Kawato, S., Sigel, E., Carafoli, E., and Cherry, R.J., 1981, Rotation of cytochrome oxidase in phospholipid vesicles, J. Biol. Chem., 256:7518.Google Scholar
  9. Korn, E.D., 1966, Structure of biological membranes, Science, 153:1491.ADSCrossRefGoogle Scholar
  10. Marsh, D., 1975, Spectroscopic studies of membrane structure, in: “Essays in Biochemistry”, P.N. Campbell and W.N. Aldridge, eds., Vol. 11, Academic Press, New York, p. 139.Google Scholar
  11. Marsh, D., 1981, ESR: Spin labels, in: “Membrane Spectroscopy”, E. Grell, ed., Springer-Verlag, Berlin, p. 51.CrossRefGoogle Scholar
  12. Marsh, D., Watts, A., and Smith, I.C.P., 1982, to be published.Google Scholar
  13. Pearson, R.H., and Pascher, I., 1979, The molecular structure of lecithin dihydrate, Nature, 281:499.ADSCrossRefGoogle Scholar
  14. Seelig, J., and Seelig, A., 1980, Lipid conformation in model and biological membranes, Q. Rev. Biophys., 13:19.CrossRefGoogle Scholar
  15. Singer, S.J., and Nicholson, G.L., 1972. The fluid mosaic model of the structure of cell membranes, Science, 175:720.ADSCrossRefGoogle Scholar
  16. Tank, D., Wu, E.S., and Webb, W.W., 1981, Enhanced mobility of acetylcholine receptor and membrane probes in muscle membrane blebs, Biophys. J., 33:74a.Google Scholar
  17. Tomita, M., Furthmayr, H., and Marchesi, V.T., 1978, Primary structure of human erythrocyte glycophorin A. Isolation and characterization of peptides and complete amino acid sequence, Biochemistry, 17:4756.CrossRefGoogle Scholar
  18. Vaz, W., Derzko, Z.I., and Jacobson, K.A., 1982, Photobleaching measurements of the lateral diffusion of lipids and proteins in artificial phospholipid bilayer membranes, in: “Cell Surface Reviews”, G. Poste and G.L. Nicolson, eds., Vol. 8, Elsevier/ North-Holland, Amsterdam.Google Scholar
  19. Wu, E.S., Tank, D., and Webb, W.E., 1981, Lateral diffusion of concanavalin A receptors and lipid analog in normal and bulbous lymphocytes, Biophys. J., 33:74a.Google Scholar
  20. Zwaal, R.A., Roelofsen, B., and Colley, C.M., 1973, Localization of red cell membrane constituents, Biochim. Biophys. Acta, 300:159.Google Scholar

Reading List

  1. Cherry, R.J., 1979, Rotational and lateral diffusion of membrane proteins, Biochim. Biophys. Acta, 559:289.Google Scholar
  2. Jain, M.K., and Wagner, R.C., 1980, “Introduction to Biological Membranes”, J. Wiley, New York.Google Scholar
  3. Marsh, D., 1975, Spectroscopic studies of membrane structure, in: “Essays in Biochemistry”, P.N. Campbell and W.N. Aldridge, eds., Vol. 11, Academic Press, New York, p. 139.Google Scholar
  4. Marsh, D., and Watts, A., 1982, Spin-labeling and lipid-protein interactions in membranes, in: “Lipid-Protein Interactions”, P.C. Jost and O. H. Griffith, eds., Vol. II, J. Wiley, New York.Google Scholar
  5. Seelig, J., and Seelig, A., 1980, Lipid conformation in model and biological membranes, Q. Rev. Biophys., 13:19.CrossRefGoogle Scholar

Chapter 2

  1. Cevc, G., Watts, A., and Marsh, D., 1980, Non-electrostatic contribution to the titration of the ordered-fluid phase transition in phosphatidylglycerol bilayers, FEBS Lett., 120:267.CrossRefGoogle Scholar
  2. Cevc, G., Watts, A., and Marsh, D., 1981, Titration of the phase transition of phosphatidylserine bilayer membranes. Effects of pH surface electrostatics, ion binding and headgroup hydration, Biochemistry, 20:4955.CrossRefGoogle Scholar
  3. Marsh, D., 1974, Statistical mechanics of the fluidity of phospholipid bilayers and membranes, J. Membrane Biol., 18:145.CrossRefGoogle Scholar
  4. Marsh, D., and Seddon, J.M., 1982, Gel-to-hexagonal (LβI) phase transitions in phosphatidylethanolamines and fatty acid-phos-phatidylcholine mixtures, demonstrated by 31P NMR spectroscopy and X-ray diffraction, Biochim. Biophys Acta, in press.Google Scholar
  5. Nagle, J.F., and Wilkinson, D.A., 1978, Lecithin bilayers. Density measurements and molecular interactions, Biophys. J., 23:159.CrossRefGoogle Scholar
  6. Seddon, J.M., Cevc, G., and Marsh, D., 1982, Calorimetric studies of the gel-fluid and lamellar-inverted hexagonal (LβII) phase transitions in dialkyl and diacyl phosphatidylethanolamines, to be published.Google Scholar
  7. Seelig, J., 1981, Thermodynamics of phospholipid bilayers, in: “Membranes and Intercellular Communication”, R. Balian, M. Chabre, and P.F. Devaux, eds., North Holland, Amsterdam, p. 36.Google Scholar
  8. Träuble, H., 1976, Membrane electrostatics, in. “Structure of Biological Membranes”, S. Abrahamsson and I. Pascher, eds., Plenum Press, New York, p. 509.Google Scholar
  9. Träuble, H., and Haynes, D.H., 1971, The volume change in lipid bilayer lamellae at the crystalline-liquid crystalline phase transition, Chem. Phys. Lipids, 7:324.CrossRefGoogle Scholar
  10. Watts, A., Harlos, K., and Marsh, D., 1981, Charge-induced tilt in ordered-phase phosphatidylglycerol bilayers. Evidence from X-ray diffraction, Biochim. Biophys. Acta, 645:91.CrossRefGoogle Scholar
  11. Watts, A., Harlos, K., Maschke, W., and Marsh, D., 1978, Control of the structure and fluidity of phosphatidylglycerol bilayers by pH titration, Biochim. Biophys. Acta, 510:63.CrossRefGoogle Scholar
  12. Wilkinson, D.A., and Nagle, J.F., 1981, Dilatometry and calorimetry of saturated phosphatidylethanolamine dispersions, Biochemistry, 20:187.CrossRefGoogle Scholar

Reading List

  1. Chapman, D., ed., 1968, 1973, 1976, “Biological Membranes. Fact and function”, Vols. 1-3, Academic Press, London.Google Scholar
  2. Marsh, D., 1981, Electron spin resonsnce: Spin labels, in: “Membrane Spectroscopy”, E. Grell, ed., Springer-Verlag, Berlin, p. 51.CrossRefGoogle Scholar
  3. Melchior, D.L., and Steim, J.M., 1976, Thermotropic transitions in biomembranes, Ann. Rev. Biophys. Bioeng., 5:205.CrossRefGoogle Scholar
  4. Träuble, H., 1976, Membrane electrostatics, in: “Structure of Biological Membranes”, Plenum Press, New York, p. 509.Google Scholar

Chapter 3

  1. Brotherus, J.R., Griffith, O.H., Brotherus, M.O., Jost, P.C., Silvius, J.R., and Hokin, L.E., 1981, Lipid-protein multiple binding equilibria in membranes, Biochemistry, 20:5261.CrossRefGoogle Scholar
  2. Fretten, P., Morris, S.J., Watts, A., and Marsh, D., 1980, Lipidlipid and lipid-protein interactions in chromaffin granule membranes. A spin label ESR study, Biochim. Biophys. Acta, 598:247.CrossRefGoogle Scholar
  3. Knowles, P.F., Watts, A., and Marsh, D., 1979, Spin label studies of lipid immobilization in dimyristoyl phosphatidylcholine-substituted cytochrome oxidase, Biochemistry, 18:4480.CrossRefGoogle Scholar
  4. Knowles, P.F., Watts, A., and Marsh, D., 1981, Spin label studies of headgroup specificity in the interaction of phospholipids with yeast cytochrome oxidase, Biochemistry, 20:5888.CrossRefGoogle Scholar
  5. Marsh, D., and Barrantes, F.J., 1978, Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo Marmorata, Proc. Natl. Acad. Sci. USA, 75:4329.ADSCrossRefGoogle Scholar
  6. Marsh, D., Radda, G.K., and Ritchie, G.A., 1976, A spin-label study of the chromaffin granule membrane, Eur. J. Biochem., 71:53.CrossRefGoogle Scholar
  7. Marsh, D., and Watts, A., 1982, Spin labelling and lipid-protein interactions in membranes, in: “Lipid-Protein Interactions”, P.C. Jost and O.H. Griffith, eds., Vol. II, J. Wiley, New York.Google Scholar
  8. Marsh, D., Watts, A., and Barrantes, F.J., 1981, Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from Torpedo Marmorata, Biochim. Biophys. Acta, 645:97.CrossRefGoogle Scholar
  9. Marsh, D., Watts, A., Maschke, W., and Knowles, P.F., 1978, Protein-immobilized lipid in dimyristoyl phosphatidylcholine-substituted cytochrome oxidase: Evidence for both boundary and trapped-bilayer lipid, Biochem. Biophys. Res. Commun., 81:397.CrossRefGoogle Scholar
  10. Marsh, D., Watts, A., Pates, R.D., Uhl, R., Knowles, P.F., and Esmann, M., 1982, ESR spin label studies of lipid-protein interactions in membranes, Biophys. J., 37:265.CrossRefGoogle Scholar
  11. Seelig, J., 1982, 2H NMR studies of lipid-protein interactions, in: “Lipid-Protein Interactions”, P.C. Jost and O.H. Griffith, eds., Vol. II, J. Wiley, New York.Google Scholar
  12. Watts, A., Davoust, J., Marsh, D., and Devaux, P.F., 1981, Distinct states of lipid mobility in bovine rod outer segment disc membranes. Resolution of spin label results, Biochim. Biophys. Acta, 643:673.CrossRefGoogle Scholar
  13. Watts, A., Volotovski, I.D., and Marsh, D., 1979, Rhodopsin-lipid associations in bovine rod outer segment disc membranes. Identification of immobilized lipid by spin labels, Biochemistry, 18:5006.CrossRefGoogle Scholar
  14. Watts, A., Volotovski, I.D., Pates, R., and Marsh, D., 1982, Spin label studies of rhodopsin-lipid interactions, Biophys. J., 37:94.CrossRefGoogle Scholar

Reading List

  1. Devaux, P.F., Davoust, J., and Rousselet, A., 1981, Electron spin resonance studies of lipid-protein interactions in membranes, Biochemical Symposia, 46:207.Google Scholar
  2. Jost, P.C., and Griffith, O.H., 1980, The lipid-protein interface in biological membranes, Ann. N.Y. Acad. Sci., 38:391.ADSCrossRefGoogle Scholar
  3. Marsh, D., and Watts, A., 1982, Spin-labelling and lipid-protein interactions in membranes, in: “Lipid-Protein Interactions”, P.C. Jost and O.H. Griffith, eds., Vol. II, J. Wiley, New York.Google Scholar
  4. Marsh, D., Watts, A., Pates, R.D., Uhl, R., Knowles, P.F., and Esmann, M., 1982, ESR spin label studies of lipid-protein interactions in membranes, Biophys. J., 37:265.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Derek Marsh
    • 1
  1. 1.Max-Planck-Institut für biophysikalische ChemieGöttingenFed. Rep. Germany

Personalised recommendations