Potential Energy Functions for Structural Molecular Biology

  • Shneior Lifson


Structural molecular biology is first and foremost an experimental science. This is quite understandable. As long as we did not know what is the structure of enzymes how could we ask questions on how do they obtain their structure or how is their structure determining their catalytic function? However, as our knowledge of facts about biological structures grows now at a tremendous rate, there is an ever-growing need to apply theory, and calculations based on theory, to supplement the experimental study of structural molecular biology.


Energy Function Grad Versus Polyatomic Molecule Schrodinger Equation Morse Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allinger, N.L., 1976, Calculation of molecular structure and energy of force-field methods, Adv. Phys. Org. Chem., 13:1.MathSciNetCrossRefGoogle Scholar
  2. Axilrod, B.M., and Teller, E., 1943, Interaction of the van der Waals type between three atoms, J. Chem. Phys., 11:299.ADSCrossRefGoogle Scholar
  3. Balasubramanian, R., Chidamboram, R., and Ramachandran, G.N., 1970, Potential functions for hydrogen bond interactions.II. Formulation of an empirical potential function, Biochim. Biophys. Acta, 221:196.Google Scholar
  4. Born, M., and Oppenheimer, R., 1927, Zur Quantentheorie der Molekulen, Ann. Physik, 84:457.ADSMATHCrossRefGoogle Scholar
  5. Brant, D.A., 1968, Conformational energy estimates for helical polypetide molecules, Macromolecules, 1:291.ADSCrossRefGoogle Scholar
  6. Dreyfus, M., and Pullman, A., 1970, A non-empirical study of the hydrogen bond between peptide units, Theoret. Chim. Acta, 19:20.CrossRefGoogle Scholar
  7. Dunfield, L.G., Burgess, A.W., and Scheraga, H.A., 1978, Energy parameters in polypetides. 8. Empirical potential energy algorithm for the conformational analysis of large molecules, J. Phys. Chem., 32:2609.CrossRefGoogle Scholar
  8. Dunitz, J.D., and Burgi, H.B., 1975, Nonbonded interactions in organic molecules, Int. Rev. Sci. Phys. Chem. Ser. Two, 11:81.Google Scholar
  9. Engler, E.M., Andose, J.D., and Schleyer, P.v.R., 1973, Critical evaluation of molecular mechanics, J. Amer. Chem. Soc, 95:8005.CrossRefGoogle Scholar
  10. Ermer, O., 1976, Calculation of molecular properties using force fields. Application in organic chemistry, Struc. Bonding (Berlin), 27:161.Google Scholar
  11. Ermer, O., and Lifson, S., 1973, Consistent force field calculations III. Vibrations, conformations, and heats of hydrogenation of nonconjugated olefins, J. Amer. Chem. Soc., 95:4121.CrossRefGoogle Scholar
  12. Fletcher, R., 1968, Generalized inverse methods for the best least squares solution of systems of non-linear equations, Computer J., 10:392.MathSciNetMATHCrossRefGoogle Scholar
  13. Fletcher, R., and Reeves, C.M., 1964, Function minimization by conjugated gradients, Computer J., 7:149.MathSciNetMATHCrossRefGoogle Scholar
  14. Hagler, A.T., Dauber, P., and Lifson, S., 1979, Consistent force field studies of intermolecular forces in hydrogen bonded crystals 3. The C=O...H-O hydrogen bond and the analysis of the energetics and packing of carboxylic acids, J. Amer. Chem. Soc, 101:5131.CrossRefGoogle Scholar
  15. Hagler, A.T., Huler, E., and Lifson, S., 1974, Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals, J. Amer. Chem. Soc., 96:5319.CrossRefGoogle Scholar
  16. Hagler, A.T., and Lapiccirella, A., 1976, Special electron distribution and population analysis of amides, carboxylic acids and peptides, and their relation to empirical potential functions, Biopolymers, 15:1167.CrossRefGoogle Scholar
  17. Hagler, A.T., and Lifson, S., 1974, A procedure for obtaining energy parameters from crystal packing, Acta Crystallogr. B, 30:1336.CrossRefGoogle Scholar
  18. Hagler, A.T., Lifson, S., and Dauber, P., 1979, Consistent force field studies on intermolecular forces in hydrogen bonded crystals. 2. A benchmark for the objective comparison of alternative force fields, J. Amer. Chem. Soc., 101:5122.CrossRefGoogle Scholar
  19. Hagler, A.T., Lifson, S., and Huler, E., 1974, The amide hydrogen bond in energy functions for peptides and proteins, in: “Peptides, Polypeptides and Proteins”, E.R. Blout, F.A. Bovey, M. Goodman, and N. Lotan, eds., Wiley, New York, p. 35.Google Scholar
  20. Hagler, A.T., Stern, P.S., Lifson, S., and Ariel, S., 1979, Urey-Bradley force field, valence force field, and ab initio study of intramolecular forces in tri-tert-butylmethane and isobutane, J. Amer. Chem. Soc., 101:813.CrossRefGoogle Scholar
  21. Herzberg, G., 1945, “Molecular Spectra and Molecular Structure. Infrared and Raman Spectra of Polyatomic Molecules”, Vol. II, Van Nostrand Co., New York.Google Scholar
  22. Hill, T.L., 1960, “An Introduction to Statistical Thermodynamics”, Addison-Wesley Inc., Reading, Mass.Google Scholar
  23. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., 1964, “Molecular Theory of Gases and Liquids”, J. Wiley and Sons, New York, 2nd edition.Google Scholar
  24. Kramer, H.L. and Herschbach, D.R., 1970, Combination rules for van der Waals force constants, J. Chem. Phys., 53:2729.Google Scholar
  25. Kestner, N.R. and Sinanoglu, O., 1963, Effective intermolecular pair potentials in nonpolar media, J. Chem. Phys., 38:1730.ADSCrossRefGoogle Scholar
  26. Lennard-Jones, J.E. 1924, On the determination of molecular fields, Proc. Roy. Soc. London A, 106:463.ADSCrossRefGoogle Scholar
  27. Lifson, S., Hagler, A.T., and Dauber, P., 1979, Consistent force field studies of intermolecular forces in hydrogen bonded crystals. 1. Carboxylic acids, amides and the C=O...H — hydrogen bonds, J. Amer. Chem. Soc., 101:5111.CrossRefGoogle Scholar
  28. Lifson, S. and Levitt, M., 1979, On obtaining energy parameters from crystal structure data, Computers and Chem., 3:49.CrossRefGoogle Scholar
  29. Lifson, S., and Stern, P.S., 1982, Born-Oppenheimer energy surface of similar molecules: interrelations between bond-lengths, bond angles and frequencies of normal vibrations in alkanes, J. Chem. Phys., in press.Google Scholar
  30. Lifson, S., and Warshel, A., 1968, Consistent force field for calculations of conformations, vibrational spectra and enthalpies of cycloalkane and n-alkane molecules, J. Chem. Phys., 49:5116.ADSCrossRefGoogle Scholar
  31. Liquori, A.M., 1969, Stereochemical code of amino acid residues in polypeptides and proteins, in: “Symmetry and function of Biological Systems at the Molecular Level”, A. Engstrom and B. Strandbey, eds., Wiley, New York, p. 101.Google Scholar
  32. London, F., 1930, Ueber einige Eigenschaften und Anwendungen der Molekularkraefte, Z. Physik. Chem. B, 11:222.Google Scholar
  33. Marquardt, D.W., 1963, An algorithm for least-squares estimation of non-linear parameters, J. Soc. Industr. Appl. Math, 11:431.MathSciNetMATHCrossRefGoogle Scholar
  34. Momany, F.A., Carruthers, L.M., McGuire, R.F., and Scheraga, H.A., 1974, Intermolecular Potentials from crystal data. III. Determination of empirical potentials and application to the packing configurations and lattice energies in crystals of hydrocarbons, carboxylic acids, amines, and amides, J. Phys. Chem., 78:1595.CrossRefGoogle Scholar
  35. Morokuma, K., 1971, Molecular orbital studies of hydrogen bonds. III. C=O...H-O hydrogen bond in H2CO...H2O and H2CO...2H2O, J. Chem. Phys., 55:1236.ADSCrossRefGoogle Scholar
  36. Morse, P.M., 1929, Diatomic molecules according to the wave mechanics. II. Vibrational levels, Phys. Rev., 34:57.ADSCrossRefGoogle Scholar
  37. Mulliken, R.S., 1955, Electronic population analysis on LCAO-MO molecular wave functions. I., J. Chem. Phys., 23:1833.ADSCrossRefGoogle Scholar
  38. Ooi, T., Scott, R.A., Vanderkooi, G., and Scheraga, H.A., 1967, Conformational analysis of macromolecules. IV. Helical structure of poly-L-alanine, poly-L-valine, poly-ß-methyl-L-aspartate, poly-γ-methyl-L-glutamate, and poly-L-tyrosine, J. Chem. Phys., 46:4410.ADSCrossRefGoogle Scholar
  39. Pitzer, K.S., 1951, Potential energies for rotation about single bonds, Disc. Faraday Soc., 10:66.CrossRefGoogle Scholar
  40. Popov, E.M., Dashevskii, V.G., Lipkind, G.M., and Arkhipova, S.F., 1968, Calculating the configuration of peptide chains using potential functions, Mol. Biol., 2:491.Google Scholar
  41. Schuster, P., 1976, Energy surface for hydrogen bonded systems, in: “The Hydrogen Bond”, P. Schuster, G. Zundel, and C. Standorfy, eds., Vol. I, North Holland, Amsterdam, p. 25 (see also Vol. II and III).Google Scholar
  42. Slater, J.C., and Kirkwood, J.G., 1931, The van der Waals forces in gases, Phys. Rev., 37:682.ADSMATHCrossRefGoogle Scholar
  43. Umeyama, H., and Morokuma, K., 1977, The origin of hydrogen bonding. An energy decomposition study, J. Amer. Chem. Soc., 99:1316.CrossRefGoogle Scholar
  44. Urey, H.C., and Bradley, C.A., 1931, The vibrations of pentatomic tetrahedral molecules, Phys. Rev., 38:1969.ADSMATHCrossRefGoogle Scholar
  45. Warshel, A., Levitt, M., and Lifson, S., 1970, Consistent force field for calculation of vibrational spectra and conformations of some amides and lactarn rings, J. Mol. Spect., 33:84.ADSCrossRefGoogle Scholar
  46. Warshel, A., and Lifson, S., 1970, Consistent force field calculations. II. Crystal structure, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes, J. Chem. Phys., 53:582.ADSCrossRefGoogle Scholar
  47. Wilson, E.B., Jr., Decius, J.C., and Cross, P.C., 1955, “Molecular Vibrations”, McGraw-Hill, New York.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Shneior Lifson
    • 1
  1. 1.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations