Agonist Regulation of the Muscarinic Cholinergic Receptor in Embryonic Chick Heart

  • Jonas B. Galper
  • Louise C. Dziekan
  • Thomas W. Smith
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 161)

Abstract

J. B. Galper, L. C. Dziekan and T. W. Smith. The correlation between number of muscarinic cholinergic receptor sites as measured by binding of the muscarinic agonist (3H)methyl-scopolamine ((3H)MS) and the ability of muscarinic agonists to mediate a physiologic response was determined in intact heart cells cultured from chick embryos 10 days in ovo. The increase in K+ permeability and the decrease in beating rate mediated by the muscarinic agonist car-bamylcholine were the responses studied. In cells labelled to equilibrium with 42K+, exposure to 10–3 M carbamycholine caused a 33% increase in the rate of 42K+ efflux from the cell with a half-maximal effect at a carbamylcholine concentration of 8×10–5 M. Steady state Intracellular K+ content remained at control levels. A 15% decrease in beating rate occurred in cells exposed to 10–3 M carbamylcholine. Since muscarinic receptors on the surface of the Intact cell are presumed to mediate the physiologic response to the agonist, an assay for binding of (3H)MS to Intact cells was developed. (3H)MS bound specifically to intact heart cells (l85fmol/mg protein) with a Kd of 0.48 nM.

Keywords

Permeability Testosterone Progesterone Choline HEPES 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raff, M. Self regulation of membrane receptors, Nature 259, 265–266 (1976).CrossRefGoogle Scholar
  2. 2.
    Catt, K.J., Harwood, J.P., Aguilera, G., and Dufau, M.L. Hormonal regulation of peptide receptors and target cell responses. Nature 280, 109–116 (1979).PubMedCrossRefGoogle Scholar
  3. 2a.
    Cohen, I. and Kline, R. 1982. K fluctuations in the extracellular spaces of cardiac muscle — evidence from voltage clamp and extracellular K selective microelectrodes. Circ. Res. 50: 1–17.PubMedGoogle Scholar
  4. 3.
    Conti, M., Harwood, J.P., Dufau, M.L. and Catt, K.J. Effect of gonadotropin-induced receptor regulation on biological responses of isolated rat luteal cells. J. Biol. Chem. 252, 8869–8874 (1977).PubMedGoogle Scholar
  5. 4.
    Siman, R.G. and Klein, W.L. Cholinergic activity regulates muscarinic receptors in central nervous system cultures. Proc. Nat’l Acad. Sci. USA 76, 4141–4145 (1979).CrossRefGoogle Scholar
  6. 5.
    Galper, J.B. and Smith, T.W. Agonist and guanine nucleotide modulation of muscarinic cholinergic receptors in cultured heart cells. J. Biol. Chem. 255, 9571–9579 (1980).PubMedGoogle Scholar
  7. 6.
    Glitsch, H.G., and Pott, L. Effects of acetylcholine and parasympathetic nerve stimulation on membrane potential in quiescent guinea-pig atria. J. Physiol. 279, 655–668 (1978).PubMedGoogle Scholar
  8. 7.
    Antoni, H. and Rotman, M. Zum mechanisms der negative inotropen acetylcholine Wirkung auf das isolierte Froschmyocard. Pfluger’s Arch. 300, 67–86 (1968).CrossRefGoogle Scholar
  9. 8.
    Harris, E.J. and Hutter, O.F. The action of acetylcholine on the movements of potassium ions in the sinus venosus of the frog. J. Physiol. 133, 58–59. (1956).Google Scholar
  10. 9.
    Giles, W., and Noble, S.J. Changes in membrane currents in bullfrog atrium produced by acetylcholine. J. Physiol. 261, 103–123 (1976).PubMedGoogle Scholar
  11. 10.
    Carpenter, G., and Cohen, S. 125I-Labeled Human Epidermal Growth Factor. J. Cell Bid. 71, 159–71 (1976).CrossRefGoogle Scholar
  12. 11.
    DeHaan, R.L. Regulation of spontaneous activity and growth of embryonic chick heart cells in tissue culture. Dev. Biol. 16, 216–249 (1967).CrossRefGoogle Scholar
  13. 12.
    Biedert, S., Barry, W.H. and Smith, T.W. Inotropic effects and changes in sodium and calcium contents associated with inhibition of monovalent cation active transport by ouabain in cultured myocardial cells. J. Gen. Physiol. 74, 479–494 (1979).PubMedCrossRefGoogle Scholar
  14. 13.
    Dixon, W.J. and Brown, M.B. In: Biomedical Data Program (BMDP) 77, Biomedical Computer Programs P-Series. Derivative-Free Nonlinear Regression Analysis, University of California Press Berkley, California (1977).Google Scholar
  15. 14.
    Galper, J.B. and Smith, T.W. Properties of muscarinic acetylcholine receptors in heart cell cultures. Proc. Natl. Acad. Sci. USA 75, 5831–5835 (1978).PubMedCrossRefGoogle Scholar
  16. 15.
    Dixon, W.J. and Massey, F.J. Introduction to Statistical Analysis, New York, McGraw-Hill (1957).Google Scholar
  17. 16.
    Frost, A.A. and Pearson, R.G. in Kinetics and Mechanism. John Wiley & Sons, N.Y., 166–171 (1961).Google Scholar
  18. 17.
    Galper, J.B., Klein, W. and Catterall, W.A. Muscarinic acetylcholinc receptors in developing chick heart. J. Biol. Chem. 252, 8692–8699 (1977).PubMedGoogle Scholar
  19. 18.
    Sperelakis, N. and Lehmkihl, D. Insensitivity of cultured chick heart cells to autonomic agents and tetrodotoxin. Am. J. Physiol. 209, 693–698 (1965)PubMedGoogle Scholar
  20. 19.
    Ertel, R.J., Clarke, D.E., Chao, J.C. and Franke, F.R. Autonomic receptor mechanisms in embryonic chick myocardial cell cultures. J. Pharmacol. Exp. Ther. 178, 73–80 (1971).PubMedGoogle Scholar
  21. 20.
    Hermsmeyer, K. and Robinson, R. High sensitivity of cultured cardiac muscle cells to autonomic agents. Am. J. Physiol. 233, C172-C179 (1977).PubMedGoogle Scholar
  22. 21.
    Josephson, I. and Sperelakis, N. On the ionic mechanism underlying adrenergic-cholinergic antagonism in ventricular muscle. J. Gen. Physîol. 79, 69–86 (1982).PubMedCrossRefGoogle Scholar
  23. 22.
    Watanabe, A.M., McConnaughey, M.M., Strawbridge, R.A., Fleming, J.W., Jones, L.R. and Besh, H.R., Jr. Muscarinic Cholinergic Receptor Modulation of 3-Adrenergic Receptor Affinity for Catecholamines. J. Biol. Chem. 253, 4833–4836 (1978).PubMedGoogle Scholar
  24. 23.
    Jakobs, K.H., Aktories, K. and Schultz, G. GTP-dependent inhibition of cardiac adenylate cyclase by muscarinic cholinergic agonists. Naunyn Schmiedberg’s Arch. 310, 113–119 (1979).CrossRefGoogle Scholar
  25. 24.
    Biegon, R.L. and Pappano, A.J. Dual mechanisms for inhibition of calcium dependent action potential by acetylcholine in avian ventricular muscle — relationship to cyclic AMP. Cir. Res. 46, 353–362 (1980).Google Scholar
  26. 25.
    Mendelson, C., Dufau, M. and Catt, K. Gonadotropin binding and stimulation of cyclic adenosine 3’: 5’-monophosphate and testosterone production in isolated Leydig cells. J. Biol. Chem. 250, 8818–8823 (1975).PubMedGoogle Scholar
  27. 26.
    Wessels, R., Mullikin, D. and Lefkowitz, R.J. Differences between agonist and antagonist binding following beta-adrenergic receptor desensitization. J. Biol. Chem. 253, 3371–3373 (1978).PubMedGoogle Scholar
  28. 27.
    George, W.J., Poison, J.B., O’Toole, A.G., and Goldberg, N.D. Elevation of guanosine 3’, 5’ — cyclic phosphate in rat heart after perfusion with acetylcholine. Proc. Nat’l. Acad. Sci. USA 66, 398–403 (1970).CrossRefGoogle Scholar
  29. 28.
    Greenguard, P. Possible Role for Cyclic Nucleotides and Phosphorylated Membrane Proteins in Postsynaptic Actions of Neurotransmitters. Nat. 260, 101–108 (1976).CrossRefGoogle Scholar
  30. 29.
    Michell, R.H., Jefferji, S.S. and Jones, L.M. In: Advances in Experimental Medicine and Bio1ogy, Vol. 83 (Bazan, H., Brenner, R., Giusto, H., ed.), Plenum Press, New York and London, pp. 447–464 (1976).Google Scholar
  31. 30.
    Halvorsen, G.W. and Nathanson, N.M. In Vivo regulation of muscarinic acetylcholine receptor number and function in embryonic chick heart. J. Biol. Chem. 256, 7941–7948 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Jonas B. Galper
    • 1
  • Louise C. Dziekan
    • 1
  • Thomas W. Smith
    • 1
  1. 1.Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations