Modulation of Junctional Permeability in Cardiac Fibers

  • Walmor C. de Mello
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 161)


The concept of cardiac muscle as an anatomical syncytium prevailed for years. In a detailed analysis of heart structure made at the beginning of the century, Heidenheim (1901) referring to Godlewsky’s (1901) observations emphasized the finding that no cell boundary was found in sections of embryonic heart muscle (...”dass sich damals trotz genauer Untersuchungen Keine Zellengrenzen fanden”). At that time intercalated discs were usually considered contraction artifacts or even sites of sarcomere differentiation (see Godlewsky, 1901, 1902).


Conduction Velocity Electrical Coupling Lucifer Yellow Junctional Resistance Junctional Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, P. F., Blaustein, M. P., Hodgkin, A. L., and Steinhardt, R. A., 1969, The influence of calcium on sodium efflux in squid axons. J. Physiol. (London), 200: 431.Google Scholar
  2. Barr, L., Dewey, M. M., and Berger, W., 1965, Propagation of action potentials and the nexus in cardiac muscle. J. gen. Physiol. 48: 797.PubMedCrossRefGoogle Scholar
  3. Bennett, M. V. L., 1977, Electrical transmission: a functional analysis and comparison to chemical transmission, in: “Cellular Biology of Neurons” (Handbook of Physiology, Section 1: The Nervous System, Vol. 1, E. R. Kandel, ed., Williams and Wilkins, Baltimore, pp 357–416.Google Scholar
  4. Bennett, M. V. L., Spira, M. E., and Spray, D. C., 1978, Permeability of gap junctions between embryonic cells of Fundulus; a reevaluation. Dev. Biol., 65: 114.PubMedCrossRefGoogle Scholar
  5. Blaustein, M. P., and Hodgkin, A. L., 1969, The effect of cyanide on the efflux of calcium from squid axons. J. Physiol. (London), 200: 497.Google Scholar
  6. Clapham, D. E., Schrier, A., and De Haan, R. L., 1980, Junctional resistance and action potential delay between embryonic cell aggregates. J. gen. Physiol., 75: 633.PubMedCrossRefGoogle Scholar
  7. De Felice, L. J., and Challice, C. E. (1969), Anatomical and ultrastructural study of the electrophysiological atrioventricular node of the rabbit. Circulation Res., 24: 457.Google Scholar
  8. De Haan, R. L., and Hirakow, R.,1972, Synchronization of pulsation rates in isolated cardiac myocytes. Exp. Cell Res., 70: 214.CrossRefGoogle Scholar
  9. Délèze, J., 1965, Calcium ions and the healing-over of heart fibres, in: “Electrophysiology of the Heart”, B. Taccardi and G. Marchetti, eds., Pergamon Press, London. pp 147–148.Google Scholar
  10. De Mello, W. C., 1972, The healing-over process in cardiac and other muscle fibers, in:”Electrical Phenomena in the Heart”, W. C. De Mello, ed., Academic Press, New York, pp 323–351.Google Scholar
  11. De Mello, W. C., 1973, Membrane sealing in frog skeletal muscle fibres. Proc. Natl. Acad. Sci. USA, 70: 4.CrossRefGoogle Scholar
  12. De Mello, W. C., 1974, Electrical uncoupling in heart fibres produced by intracellular injection of Na or Ca. Fedn. Proc., 17: 3.Google Scholar
  13. De Mello, W. C., 1975, Effect of intracellular injection of calcium and strontium on cell communication in heart. J. Physiol. (London), 250: 231.PubMedGoogle Scholar
  14. De Mello, W. C. 1976, Influence of the sodium pump on intracellular communication in heart fibres: Effect of intracellular injection of sodium ion on electrical coupling. J. Physiol., (London), 263: 171.PubMedGoogle Scholar
  15. De Mello, W. C., 1977a, Passive electrical properties of the atrioventricular node. Pflug. Arch., 371: 135.CrossRefGoogle Scholar
  16. De Mello, W. C., 1977b, Factor involved on the control of junctional conductance in heart. Proc. Int. Union Physiol. Sci., 12: 319.Google Scholar
  17. De Mello, W. C., 1978, Cell-to-cell diffusion of fluorescein in heart fibers. Fed. Proc., 37: 3.Google Scholar
  18. De Mello, W. C., 1979a, Effect of 2–4-dinitrophenol on intercellular communication in mammalian cardiac fibres. Pflüg. Arch., 38: 267.Google Scholar
  19. De Mello, W. C., 1979b, Effect of intracellular injection of La and Mn2+ on electrical coupling of heart cells. Cell Biol. Intern. Rep., 3: 113.CrossRefGoogle Scholar
  20. De Mello, W. C., 1980a, Intercellular Communication and junctional permeability, in:”Membrane Structure and Function”, E. E. Bittar, ed., John Wiley and Sons, Inc., New York, Vol. 3, pp 128–170.Google Scholar
  21. De Mello, W. C., 1980b, Influence of intracellular injection of H+ on the electrical coupling in cardiac Purkinje fibres. Cell Biol. Intern. Rep., 4: 51.CrossRefGoogle Scholar
  22. De Mello, W. C., 1981, Enhanced cell communication during diastolic depolarization in heart. The Physiologist, 24: 61.Google Scholar
  23. De Mello, W. C., 1982, Intercellular communication in cardiac muscle. Circulation Res., 50: 2.Google Scholar
  24. De Mello, W. C., and Dexter, D., 1970, Increased rate of sealing in beating heart muscle of the toad. Circulation Res., 26: 481.PubMedGoogle Scholar
  25. De Mello, W. C., Motta, G., and Chapeau, M., 1969, A study on the healing-over of myocardial cells of toads. Circulation Res., 24: 475.PubMedGoogle Scholar
  26. Dewey, M. M., and Barr, L., 1964, A study of structure and distribution of the nexus. J. Cell Biol., 23: 553.PubMedCrossRefGoogle Scholar
  27. Ellis, D., and Thomas, R. C., 1976, Direct measurement of the intracellular pH of mammalian cardiac muscle. J. Physiol. (London), 262: 755.PubMedGoogle Scholar
  28. Engelmann, T. W., 1877, Vergleichende Untersuchungen zur Lehre von der Muskel-und Nervenelektricitat. Pflug. Arch., 15: 116.CrossRefGoogle Scholar
  29. Estapé, E., and De Mello, W. C., 1982, Effect of theophylline on the spread of electrotonic activity in heart. Fed. Proc., 41 : 1505.Google Scholar
  30. Falk, G., and Fatt, P., 1964, Linear electrical properties of striated muscle fibres observed with intracellular electrodes. Proc. Roy. Soc. (London), Ser. B, Vol. 160, pp 69–123.CrossRefGoogle Scholar
  31. Fatt, P., and Katz, B., 1951, An analysis of the end-plate potential recorded with an intracellular microelectrode. J. Physiol., (London), 115: 320.Google Scholar
  32. Gilula, N. B., 1978, Structure of intercellular junctions, in: “Intercellular Junctions and Synapses”, J. Feldman, N. B. Gilula, and J. D. Pitts, eds, Chapman and Hall, London, pp 3–22.Google Scholar
  33. Gilula, N. B., and Satir, P., 1971, Septate and gaps junctions in molluscan gill epithelium. J. Cell Biol., 51: 869.PubMedCrossRefGoogle Scholar
  34. Godlewsky, E., 1901, Ueber die Entwickelung des quergestreifen musculosen Gewebes. Bull. Inst. Acad. Sci. Krakaner Cracovie, 39 : 45.Google Scholar
  35. Godlewsky, E., 1902, Die Entwicklung des Skelet- und Herzmuskelgewebes der Saugethiere. Arch. fur Mikrosk. Anat., 60: 111.CrossRefGoogle Scholar
  36. Goldberg, N., 1975, Cyclic Nucleotides and Cell Function, in: “Cell Membranes; biochemistry, cell biology and pathology”, G. Weismann and R. Claiborne, eds. H. P. Publishing Co., Inc. New York, pp 185.Google Scholar
  37. Griepp, E. B., and Revel, J. P., 1977, Gap junctions in Development, in: “Intercellular Communication”, W. C. De Mello, ed., Plenum Press, New York, pp 1–32.CrossRefGoogle Scholar
  38. Hax, Werner M. A., van Venrooij, Ger E. P. M., and Vossenberg, Joost B. J., 1974, Cell communication: A cyclic-AMP mediated phenomenon. J. Membrane Biol., 19: 253.CrossRefGoogle Scholar
  39. Heidenhain, M., 1901, Ueber die Structur des menschlichen Herzmuskels. Anat. Anz., 20: 33.Google Scholar
  40. Heilbrunn, L. V., 1956, Spivn Dynamics of Living Protoplasm, L. V. Heilbrunn, ed., Academic Press, New York.Google Scholar
  41. Hertzberg, E. L., Lawrence, T. S., and Gilula, N., 1981, Gap junctional communication. Ann. Rev. Physiol., 43: 479.CrossRefGoogle Scholar
  42. Hess, P., and Weingart, W., 1980, Intracellular free calcium modified by pHi in sheep Purkinje fibres. J. Physiol. (London), 307: 60.Google Scholar
  43. Ikeda, N., Toyama, J., Shimizu, T., Kodama, I., and Yamada, K., 1980, The role of electrical uncoupling in the genesis of atrioventricular conduction disturbance. J. Mol. Cell Cardiol., 12: 809.PubMedCrossRefGoogle Scholar
  44. Imanaga, I., 1974, Cell-to-cell diffusion of Procion Yellow in sheeps and calf Purkinje fibres, J. Membrane Biol., 16: 381.CrossRefGoogle Scholar
  45. James, T. N., and Scherf, L., 1968, Ultrastructure of the atrioventricular node. Circulation, 37: 1049.Google Scholar
  46. Kamiyama, A., and Matsuda, K., 1966, Electrophysiological properties of the canine ventricular fiber. Gap J. Physiol., 16: 407.Google Scholar
  47. Kushmerick, M. J., and Podolsky, R. G., 1969, Ionic mobility in muscle cells. Science, N. Y., 166: 1297.CrossRefGoogle Scholar
  48. Lea, T. J., and Ashley, C. C., 1978, Increase in free Ca2+ in muscle after exposure to CO2. Nature (London), 275: 236.CrossRefGoogle Scholar
  49. Maekawa, M., Nohara, Y., Kawamura, K., and Hayashi, K., 1967, Electron microscope study of the conduction system in mammalian hearts, in: “Electrophysiology and ultrastructure of the heart”, T. Sano, V. Mizuhira, and K. Matsuda, eds., Grune and Stratton, New York, pp 41–54.Google Scholar
  50. Mark, G. E., and Strasser, F. F., 1966, Pacemaker activity and mitosis in cultures of newborn rat heart ventricle cells. Exp. Cell. Res., 44: 217.PubMedCrossRefGoogle Scholar
  51. Mullins, L. J., and Brinley, F. J., Jr., 1975, The sensitivity of calcium efflux from squid axons to changes in membrane potential. J. gen. Physiol., 65: 135.PubMedCrossRefGoogle Scholar
  52. McNutt, N. S., and Weinstein, R. S., 1970, Ultrastructure of the nexus. A correlated thin section and freezed cleave study, J. Cell Biol., 47: 666.PubMedCrossRefGoogle Scholar
  53. McNutt, N. S., and Weinstein, R. S., 1973, Membrane ultrastructure at mammalian intercellular junctions, in: “Progress in Biophysics and Molecular Biology”, J. A. Butler and D. Noble, eds., Pergamon Press, London, Vol. 26, pp 45–101.Google Scholar
  54. Neely, J. R., Whitmer, J. T., and Robetto, M. J., 1975, Effect of coronary flow on glycolitic flux and intracellular pH in isolated rat hearts. Circulation Res., 37: 733.PubMedGoogle Scholar
  55. Noble, D., 1962, The voltage dependence of the cardiac membrane conductance. Biophys. J., 2: 381.PubMedCrossRefGoogle Scholar
  56. Page, E., Goerke, R. J., and Storm, S. R., 1964, Cat Heart Muscle In Vitro IV. Inhibition of transport in quiescent muscles. J. gen. Physiol., 47: 531.PubMedCrossRefGoogle Scholar
  57. Peracchia, C., 1980, Structural correlates of gap junction permeation Internat. Rev. Cytol., 66: 81–146.CrossRefGoogle Scholar
  58. Poche, R., and Lindner, R., 1955, Untersuchungen zur Frage der Glanzstreifen des Herzmuskelgewebes bein Warmbluter and beim Kaibluter. Z. Zellforsch. Mikrosk. Anat., 43: 104.PubMedCrossRefGoogle Scholar
  59. Pollack, G. H., 1976, Intercellular coupling in the atrioventricular node and other tissues of the heart. J. Physiol. (London),Google Scholar
  60. Rasmussen, H., 1975, Ions as “Second Messengers”, in: “Cell Membranes, biochemistry, cell,biology and pathology”, G. Weismann and R. Claiborne, eds., H.P. Publishing Co., Inc., New York, pp 203.Google Scholar
  61. Reuter, H., 1979, Properties of two inward membrane currents in the heart. Ann. Rev. Physiol., 41: 413.CrossRefGoogle Scholar
  62. Reuter, H., and Seitz, N., 1968, The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physio. (London), 195: 451.Google Scholar
  63. Rose, B., and Loewenstein, W. R., 1975a, Calcium ion distribution in cytoplasm visualized by aequorin: diffusion in cytosol restricted by energized sequestering. Science, N. Y. 190: 1204.CrossRefGoogle Scholar
  64. Rose, B., and Loewenstein, W. R., 1975b, Permeability of cell junction depends on local cytoplasmic reticulum activity. Nature (London), 254: 250.CrossRefGoogle Scholar
  65. Rose, B., and Rick, R., 1978, Intracellular pH, intracellular free Ca, and junctional cell-cell coupling. J. Membrane Biol., 44: 377.CrossRefGoogle Scholar
  66. Rothschuh, K. E., 1951, Ueber den funktionellen Aufbau des Herzens aus elektrophysiologischen Elementen and ueber den Mechanisms der Erregungsleitung in Herzen. Pflugers Arch., 253: 238.PubMedCrossRefGoogle Scholar
  67. Sakamoto, Y., 1969, Membrane characteristic of the canine papillary muscle fiber. J. gen. Physiol., 54: 765.PubMedCrossRefGoogle Scholar
  68. Sjostrand, F. S., and Andersson, C. E., 1954, Electron microscopy of the intercalated discs of cardiac muscle tissue. Experientia, 10: 369.PubMedCrossRefGoogle Scholar
  69. Sperelakis, N., 1972, Electrical properties of embryonic heart cells, in: “Electrical Phenomena in the Heart”, W. C. De Mello, ed., Academic Press, New York, pp 1.Google Scholar
  70. Sperelakis, N., 1980, Changes in membrane electrical properties during development of the heart, in :”The Slow Inward Current and Cardiac Arrhythmias”, D. P. Zipes, J. C. Bailey and V. Elharrar, eds., Martinus Nijhoff Publishers, The Hague, pp 221.CrossRefGoogle Scholar
  71. Spray, D. C., Harris, A. L., and Bennett, M. V. L., 1981, Gap junctional conductance is a simple and sensitive function of intracellular pH. Science, N. Y., 211: 712.CrossRefGoogle Scholar
  72. Stewart, W. C., 1978, Functional connections between cells as revealed by dye-coupling with a high fluorescent naphthalimide tracer. Cell, 14: 741.PubMedCrossRefGoogle Scholar
  73. Trautwein, W., Kuffler, S. W., and Edwards, C., 1956, Changes in membrane characteristics of heart muscle during inhibition. J. gen. Physiol., 40: 135.PubMedCrossRefGoogle Scholar
  74. Tsien, R., and Weingart, R., 1976, Inotropic effect of cyclic AMP in calf ventricular muscle studied by a cut end method. J. Physiol. (London), 260: 117.Google Scholar
  75. Turin, L., and Warner, A. E., 1977, Carbon dioxide reversibly abolishes ionic communication between cells of early amphybian embryon. Nature (London), 27: 56.CrossRefGoogle Scholar
  76. Vassalle, M., and Barnabei, O., 1971, Nor-epinephrine and potassium fluxes in cardiac Purkinje fibres. Pflug. Arch., 322: 287.CrossRefGoogle Scholar
  77. Weidmann, S., 1952, The electrical constants of Purkinje fibres, J. Physiol. (London), 118: 348.Google Scholar
  78. Weidmann, S., 1966, The diffusion of radiopotassium across intercalated discs of mammalian cardiac muscle. J. Physiol. (London), 187: 323.Google Scholar
  79. Weidmann, S., 1970, Electrical constants of trabecular’muscle from mammalian heart. J. Physiol. (London), 210: 1041.Google Scholar
  80. Weingart, R., 1974, The permeability to tetraethylammonium ions of the surface membrane and the intercalated disks of the sheep and calf myocardium. J. Physiol. (London), 240: 741.Google Scholar
  81. Weingart, R., 1977, The action of ouabain on intercellular coupling and conduction velocity in mammalian ventricular muscle. J. Physiol. (London), 264: 341.Google Scholar
  82. Weingart, R., and Reber, W., 1979, Influence of internal pH on ri of Purkinje fibres from mammalian heart. Experientia, 35: 929.Google Scholar
  83. Woodbury, J. W., and Crill, W. E., 1961, On the problem of impulse conduction in the atrium, in: “Nervous Inhibition”, E. Florey, ed., Pergamon Press, Oxford, pp 124–135.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Walmor C. de Mello
    • 1
  1. 1.Department of PharmacologyMedical Sciences CampusSan JuanUSA

Personalised recommendations