Membrane Damage in Ischemia

  • L. Maximilian Buja
  • Kenneth R. Chien
  • Karen P. Burton
  • Herbert K. Hagler
  • Amal Mukherjee
  • James T. Willerson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 161)


Our studies have evaluated the hypothesis that progressive membrane damage, particularly to the plasma membrane, is a major factor in the evolution of myocardial ischemic and hypoxic injury and in particular the conversion from reversible to irreversible injury. A proposed schema of progressive membrane injury involves sequential changes characterized by: a) altered flux and distribution of monovalent ions and water leading to loss of cellular potassium, increase in cell sodium, chloride and water, and cell swelling and edema; b) altered flux and distribution of polyvalent ions, including calcium, associated with further impairment in cellular integrity, and c) physical defects in membrane integrity in severely damaged cells [4, 28]. The first two alterations (a and b) could involve alterations in specific membrane transport systems or, conversely, non-specific changes in membrane permeability. The former catagory includes potential alterations in sodium-potassium ATPase, the slow calcium channel, the sodium-calcium exchange system, and other such specific membrane systems. Alternatively, the pathophysiologic changes could result from progressive increases in membrane fluidity and permeability induced by changes in the phospholipid bilayer of the membrane.


Papillary Muscle Coronary Occlusion Membrane Phospholipid Composition Severe Structural Damage Topographical Correlation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beller, G.A., Conroy, J. & Smith, T.W. Ischemic-induced alterations in myocardial (Na+ + K+)- ATPase and cardiac glycoside binding. Journal of Clinical Investigation 57, 341–350, (1976).PubMedCrossRefGoogle Scholar
  2. 2.
    Bourdillon, P.D. & Poole-Wilson, P.A. The effects of verapamil, quiescence, and cardioplegia on calcium exchange and mechanical function in ischemic rabbit myocardium. Circulation Research 50, 360–368 (1982).PubMedGoogle Scholar
  3. 3.
    Buja, L.M., Tofe, A.J., Kulkarni, P.V., Mukherjee, A., Parkey, R.W., Francis, M.D., Bonte, F.J. & Willerson, J.T. Sites and mechanisms of localization of technetium-99m phosphorus radiopharmaceuticals in acute myocardial infarcts and other tissues. Journal of Clinical Investigation 60, 724–740 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    Buja, L.M. & Willerson, J.T. Abnormalities of volume regulation and membrane integrity in myocardial tissue slices after early ischemic injury in the dog: effects of mannitol, polyethylene glycol, and propranolol. American Journal of Pathology 103, 79–95 (1981).PubMedGoogle Scholar
  5. 5.
    Burton, K.P., Hagler, H.K., Greico, C.A., Willerson, J.T. & Buja, L.M. Electron probe x-ray microanalysis of cryosectioned normal and hypoxic myocardium (Abstract). Federation Proceedings 39, 276 (1980).Google Scholar
  6. 6.
    Burton, K.P., Hagler, H.K., Templeton, G.H., Willerson, J.T. & Buja, L.M. Lanthanum probe studies of cellular pathophysiology induced by hypoxia in isolated cardiac muscle. Journal of Clinical Investigation 60, 1289–1302 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    Burton, K.P., Hagler, H.K., Willerson, J.T. & Buja, L.M. Relationship of abnormal intracellular lanthanum accumulation to progression of ischemic injury in isolated perfused myocardium: effect of chlorpromazine. American Journal of Physiology: Heart and Circulatory Physiology 241, H714–H723 (1981).Google Scholar
  8. 8.
    Burton, K.P., Templeton, G.H., Hagler, H.K., Willerson, J.T. & Buja, L.M. Effect of glucose availability on functional membrane integrity, ultrastructure and contractile performance following hypoxia and reoxygenation in isolated feline cardiac muscle. Journal of Molecular and Cellular Cardiology 12, 109–133 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    Chien, K.R., Abrams, J., Serroni, A., Martin, J.T. & Farber, J.L. Accelerated phospholipid degradation and associated membrane ! dysfunction in irreversible ischemic liver cell injury. Journal of Biological Chemistry 253, 4809–4817 (1978).PubMedGoogle Scholar
  10. 10.
    Chien, K.R., Buja, L.M., Mukherjee, A. & Willerson, J.T. Fatty acyl metabolites and membrane injury in ischemic canine myocardium: dissociation from a sarcolemmal Ca++ permeability defect and correlation with mitochondrial dysfunction (Abstract). Circulation 64 (Supplement LV), LV-153 (1981).Google Scholar
  11. 11.
    Chien, K.R., Buja, L.M. & Willerson, J.T. Induction of a revers-cardiac lipidosis and focal cardiomyopathy by a dietary long chain fatty acid: similarity to lipid accumulation in border zones of myocardial infarcts (Abstract). Clinical Research 30, 480A (1982).Google Scholar
  12. 12.
    Chien, K.R., Reeves, J.P., Buja, L.M., Bonte, F., Parkey, R.W. & Willerson, J.T. Phospholipid alterations in canine ischemic myocardium. Temporal and topographical correlations with Tc-99m-PPi accumulation and an in vitro sarcolemmal Ca2+ permeability defect. Circulation Research 48, 711–719 (1981).PubMedGoogle Scholar
  13. 13.
    Corr, P.B., Shayman, J.A., Kramer, J.B. & Kipnis, R.J. Increased alpha adrenergic receptors in ischemic cat myocardium. Journal of Clinical Investigation 67, 1232–1236 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    Farber, J.L., Chien, K.R. & Mittnacht, Jr., S. The pathogenesis of irreversible cell injury in ischemia. American Journal of Pathology. 102, 271–281 (1981).PubMedGoogle Scholar
  15. 15.
    Frank, J.S., Beydler, S., Kreman, M. & Rau, E.E. Structure of the freeze-fractured sarcolemma in the normal and anoxic rabbit myocardium. Circulation Research 47, 131–143 (1980).PubMedGoogle Scholar
  16. 16.
    Jennings, R.B. & Reimer, K.A. Lethal myocardial ischemic injury. American Journal of Pathology 102, 241–255 (1981).PubMedGoogle Scholar
  17. 17.
    Hagler, H., Burton, K. & Buja, L. Electron probe x-ray microanalysis of normal and injured myocardium: methods and results. In Microprobe Analysis of Biological Systems, T.E. Hutchinson & A.P. Somlyo, Eds, pp. 127–155. New York: Academic Press (1981).Google Scholar
  18. 18.
    Lefkowitz, R.J. Direct binding studies of adrenergic receptors: biochemical, physiologic, and clinical implications. Annals of Internal Medicine 91, 450–458 (1979).PubMedGoogle Scholar
  19. 19.
    Mukherjee, A., Bush, L.R., McCoy, K.E., Duke, R.J., Hagler, H., Buja, L.M. & Willerson, J.T. Relationship between β-adrenergic recptor numbers and physiological responses during experimental canine myocardial ischemia. Circulation Research 50, 735–741 (1982).PubMedGoogle Scholar
  20. 20.
    Mukherjee, A., Wong, T.M., Buja, L.M., Lefkowitz, R.J. & Willerson, J.T. Beta adrenergic and muscarinic cholinergic receptors in canine myocardium: effects of ischemia. Journal of Clinical Investigation 64, 1423–1428 (1979).PubMedCrossRefGoogle Scholar
  21. 21.
    Mukherjee, A., Wong, T.M., Templeton, G.H., Buja, L.M. & Willerson, J.T. Influence of volume dilution, lactate, phosphate and calcium on mitochondrial functions. American Journal of Physiology: Heart and Circulatory Physiology 237, H224–H238 (1979).Google Scholar
  22. 22.
    Nayler, W.G. The role of calcium in the ischemic myocardium. American Journal of Pathology 102, 262–270 (1981).PubMedGoogle Scholar
  23. 23.
    Nayler, W.G., Poole-Wilson, P.A. & Williams, A. Hypoxia and calcium. Journal of Molecular and Cellular Cardiology 11, 683–706 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    Peyton, R.B., Hill, M.L., Kinney, R.B., Reimer, K.A. & Jennings, R.B. The effect of chlorpromazine on myocardial injury in total ischemia (Abstract). Federation Proceedings 41:381 (1982).Google Scholar
  25. 25.
    Shine, K.I. Ionic events in ischemia and anoxia. American Journal of Pathology 102, 256–261 (1981).PubMedGoogle Scholar
  26. 26.
    Watanabe, A.M., Jones, L.R., Manalan, A.S. & Besch, Jr., H.R. Cardiac autonomic receptors: recent concepts from radiolabeled ligand-binding studies. Circulation Research 50, 161–174 (1982).PubMedGoogle Scholar
  27. 27.
    Whalen, D.A., Jr., Hamilton, D.G., Ganote, C.E. & Jennings, R.B. Effect of a transient period of ischemia on myocardial cells: I. Effects on cell volume regulation. American Journal of Pathology 74:381–398 (1974).Google Scholar
  28. 28.
    Willerson, J.T., Scales, F., Mukherjee, A., Platt, M., Templeton, G.H., Fink, G.S. & Buja, L.M. Abnormal myocardial fluid retention as an early manifestation of ischemic injury. American Journal of Pathology 87, 159–188 (1977).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • L. Maximilian Buja
    • 1
  • Kenneth R. Chien
    • 1
  • Karen P. Burton
    • 1
    • 2
  • Herbert K. Hagler
    • 1
  • Amal Mukherjee
    • 1
  • James T. Willerson
    • 1
  1. 1.Departments of Pathology and Internal Medicine (Cardiac Division)The University of Texas Health Science Center at DallasDallasUSA
  2. 2.Department of PharmacologyThe University of South Alabama College of MedicineMobileUSA

Personalised recommendations