Advertisement

High Energy Phosphates, Anaerobic Glycolysis and Irreversibility in Ischemia

  • Robert B. Jennings
  • Keith A. Reimer
  • Robert N. Jones
  • Robert B. Peyton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 161)

Abstract

Results of recent studies of energy production in severe or total ischemia in the dog heart have shown a striking relationship between deficient supplies of high energy phosphate and the loss of much of the adenine nucleotide pool.1,2 The depletion of the adenine nucleotide pool in ischemia occurs because the ischemic tissue utilizes high energy phosphate at a greater rate than it can produce it by anaerobic glycolysis.2–6 Some of the interrelationships among anaerobic glycolysis, energy metabolism, and cell death will be reviewed in this paper.

Keywords

Lactate Production Ischemic Tissue Anaerobic Glycolysis Severe Ischemia High Energy Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jennings, R.B., Hawkins, H.K., Lowe, J.E., Hill, M.L., Klotman, S., and Reimer, K.A: Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am. J. Path. 92:187–214 (1978).PubMedGoogle Scholar
  2. 2.
    Jennings, R.B. and Reimer, K.A.: Lethal myocardial ischemic injury. Am. J. Path. 102:241–255 (1981).PubMedGoogle Scholar
  3. 3.
    Jennings, R.B., Reimer, K.A., Hill, M.L, and Mayer, S.E.: Total myocardial ischemia, in vitro. I. Comparison of high energy phosphate production, utilization and depletion and of adenine nucleotide catabolism in total ischemia in vitro vs. severe ischemia in vivo. Circ. Res. 49:892–900 (1981).PubMedGoogle Scholar
  4. 4.
    Reimer, K.A., Jennings, R.B., and Hill, M.L.: Total myocardial ischemia, in vitro. H. High energy phosphate depletion and associated defects in energy metabolism, cell volume regulation, and sarcolem malintegrity. Circ. Res. 49:901–911 (1981).PubMedGoogle Scholar
  5. 5.
    Rovetto, M.J., Whitmer, J.T., and Neely, J.R.: Comparison of the effects of anoxia and whole-heart ischemia on carbohydrate utilization in isolated working rat heart. Circ. Res. 32:699–711 (1973).PubMedGoogle Scholar
  6. 6.
    Rovetto, M.J., Lamberton, W.F., and Neely, J.R.: Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ. Res. 37:742–751 (1975).PubMedGoogle Scholar
  7. 7.
    Scheuer, J. and Stezoski, S.W.: Protective role of increased myocardial glycogen stores in cardiac anoxia in the rat. Circ. Res. 27:835–849 (1970).PubMedGoogle Scholar
  8. 8.
    Morgan, H.E. and Neely, J.R.: Metabolic regulation and myocardial function. In The Heart, J.W. Hurst, Ed., pp. 128–142. Baltimore: McGraw Hill Co. (1981).Google Scholar
  9. 9.
    Jennings, R.B.: Myocardial ischemia—observations, definitions and speculations (Editorial). J. Mol. Cell. Cardiol. 1:345–349 (1970).CrossRefGoogle Scholar
  10. 10.
    Mayer, S.E., Williams, B.J., and Smith, J.M.: Adrenergic mechanisms in glycogen metabolism. Ann. N.Y. Acad. Sci. 139:682–702 (1967).CrossRefGoogle Scholar
  11. 11.
    Wollenberger, A. and Krause, E.: Metabolic control characteristics of the acutely ischemic myocardium. Am. J. Cardiol. 22:349–359 (1968).PubMedCrossRefGoogle Scholar
  12. 12.
    Williamson, J.R.: Glycolytic Control Mechanisms. H. Kinetics of intermediate changes during the aerobic-anoxic transition in perfused rat heart. J. Biol. Chem. 241:5026–5036 (1966).PubMedGoogle Scholar
  13. 13.
    Kübler, W. and Spieckermannf P.G.: Regulation of glycolysis in the ischemic and anoxic myocardium. J. Mol. Cell. Cardiol. 1:351–377 (1970).PubMedCrossRefGoogle Scholar
  14. 14.
    Neely, J.R. and Morgan, H.E.: Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann. Rev. Physiol. 36:413–459 (1974).CrossRefGoogle Scholar
  15. 15.
    Jones, R.N., Reimer, K.A., Hill, M.L., and Jennings, R.B.: Effect of hypothermia on changes in high energy phsopahte production and utilization in total ischemia. In press, J. Mol. Cell. Cardiol.Google Scholar
  16. 16.
    Jones, R.N., Hill, M.L., Reimer, K.A., Wechsler, A.S., and Jennings, R.B.: Effect of hypothermia on the relationship between adenosine triphosphate depletion and membrane damage. Surg. Forum XXXII 250–253 (1981).Google Scholar
  17. 17.
    Peyton, R.B., Jones, R.M., Reimer, K.A., Wechsler, A., and Jennings, R.B.: Inhibition of anaerobic glycolysis in total ischemia. Fed. Proc. 40:751 (1981).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Robert B. Jennings
    • 1
  • Keith A. Reimer
    • 1
  • Robert N. Jones
    • 1
  • Robert B. Peyton
    • 1
  1. 1.Departments of Pathology and SurgeryDuke University Medical CenterDurhamUSA

Personalised recommendations