Advertisement

Energy Production and Utilization in Contractile Failure Due to Intracellular Calcium Overload

  • N. S. Dhalla
  • J. N. Singh
  • D. B. McNamara
  • A. Bernatsky
  • A. Singh
  • J. A. C. Harrow
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 161)

Abstract

Intracellular calcium overload has been suggested to cause myocardial cell damage and contractile failure (6, 7, 10); however, the mechanisms of the calcium-induced pathophysiologic changes are poorly understood. Recently, intracellular calcium overload has been demonstrated to occur upon reperfusing rat hearts following a few minutes of perfusion with Ca2+-free medium (1). Reperfusion of the Ca2+-deprived hearts with a normal medium failed to restore their ability to generate contractile force and caused a further deterioration of cardiac ultrastructure (12, 22, 26, 27). Furthermore, dramatic alterations in the abilities of mitochondrial and sarcoplasmic reticular (microsomal) fractions to transport calcium have been observed upon reperfusing the Ca2+ -deprived hearts (2, 13). Although high energy phosphate stores, creatine phosphate (CrP) and ATP, have been found to be depressed in reperfused hearts (.3, 4, 5, 14, 20, 21), the exact reason for these metabolic changes is not clear at present.

Keywords

ATPase Activity Free Medium Normal Medium Control Heart Calcium Paradox 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ALTO, L.E. & DHALLA, N.S. Myocardial cation contents during induction of calcium paradox. Am. J. Physiol. 237, H713–H719 (1979).PubMedGoogle Scholar
  2. 2.
    ALTO, L.E. & DHALLA, N.S. Role of changes in microsomal calcium uptake in the effects of reperfusion of Ca2+-deprived rat hearts. Circ. Res. 48, 17–24 (1981).PubMedGoogle Scholar
  3. 3.
    ASHRAF, M., ONDA, M., BENEDICT, J.B. & MILLARD, R.W. Prevention of calcium paradox-related myocardial cell injury with dilitiazem, a calcium channel blocking agent. Am. J. Cardiol. 49, 1675–1681 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    BOINK, A.B.T.J., RUIGROK, T.J.C., MAAS, A.H.J. & ZIMMERMAN, A.N.E. Changes in high-energy phosphate compounds of isolated rat hearts during Ca2+ -free perfusion and reperfusion with Ca2+. J. Mol. Cell. Cardiol. 8, 973–979 (1976).CrossRefGoogle Scholar
  5. 5.
    BUCKLEY, B.H., NUNNALLY, R.L. & HOLLIS, D.P. Calcium paradox and the effect of varied temperature on its development. Lab. Invest. 39, 133–140 (1978).Google Scholar
  6. 6.
    DHALLA, N.S., DAS, P.K. & SHARMA, G.P. Subcellular basis of cardiac contractile failure. J. Mol. Cell. Cardiol. 10, 363–385 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    DHALLA, N.S., PIERCE, G.N., PANAGIA, V., SINGAL, P.K. & BEAMISH, R.E. Calcium movements in relation to heart function. Basic. Res. Cardiol. 77, 117–139 (1982).CrossRefGoogle Scholar
  8. 8.
    DHALLA, N.S., YATES, J.C., WALZ, D.A., MCDONALD, V.A. & OLSON, R.E. Correlation between changes in the endogenous energy stores and myocardial function due to hypoxia in the isolated perfused rat heart. Can. J. Physiol. Pharmacol. 50, 333–345 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    ESTABROOK, R.W. & MAITRA, P.K. A fluorometric method for the quantitative microanalysis of adenine and pyridine nucleotides. Anal. Biochem. 3, 369–382 (1962).PubMedCrossRefGoogle Scholar
  10. 10.
    FLECKENSTEIN, A., JANKE, J., DORING, H.J. & LEADER, O. Myocardial fiber necrosis due to intracellular Ca2+ overload — a new principle in cardiac pathophysiology. In Recent Advances in Studies on Cardiac Structure and Metabolism, Volume 4, N.S. Dhalla, Ed. pp. 563–580, Baltimore: University Park Press (1975).Google Scholar
  11. 11.
    HARIGAYA, S. & SCHWARTZ, A. Rate of calcium binding and uptake in normal animal and failing human cardiac muscle. Membrane vesicles (relaxing system) and mitochondria. Circ. Res. 25, 781–794 (1969).PubMedGoogle Scholar
  12. 12.
    HOLLAND, C.E., JR. & OLSON, R.E. Prevention by hypothermia of paradoxical calcium necrosis in cardiac muscle. J. Mol. Cell. Cardiol. 7, 917–928 (1975).PubMedCrossRefGoogle Scholar
  13. 13.
    LEE, S.L. & DHALLA, N.S. Subcellular calcium transport in failing hearts due to calcium deficiency and overload. Am. J. Physiol. 231, 1159–1165 (1976).PubMedGoogle Scholar
  14. 14.
    LEE, Y.C.P. & VISSCHER, M.B. Perfusate cations and contracture and Ca, Cr. PCr and ATP in rabbit myocardium. Am. J. Physiol. 219, 1637–1641 (1970).PubMedGoogle Scholar
  15. 15.
    LEHNINGER, A.L. Mitochondria and calcium ion transport. Biochem. J. 119, 129–138 (1970).PubMedGoogle Scholar
  16. 16.
    LOWRY, O.H., ROSEBROUGH, N.J., FARR, A.L. & RANDALL, R.J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).PubMedGoogle Scholar
  17. 17.
    MCNAMARA, D.B., SINGH, J.N. & DHALLA, N.S. Properties of some heart sarcolemmal-bound enzymes. J. Biochem. 76, 603–609 (1974).PubMedGoogle Scholar
  18. 18.
    MCNAMARA, D.B., SULAKHE, P.V., SINGH, J.N. & DHALLA, N.S. Properties of heart sarcolemmal Na+ — K+ ATPase. J. Biochem. 75, 795–803 (1974).PubMedGoogle Scholar
  19. 19.
    MUIR, J.R., WEBER, A. & OLSON, R.E. Cardiac myofibrillar ATPase: A comparison with that of fast skeletal actomyosin in its native and in an altered conformation. Biochim. Biophys. Acta 234, 199–209 (1971).PubMedCrossRefGoogle Scholar
  20. 20.
    OHHARA, H., KANAIDE, H. & NAKAMURA, M. A protective effect of verapamil on the calcium paradox in the isolated perfused rat heart. J. Mol. Cell. Cardiol. 14, 13–20 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    RUIGROK, T.J.C., BOINK, A.B.T.J., SPIES, F., BLOK, F.J., MAAS, A.H.J. & ZIMMERMAN, A.N.E. Energy dependence of the calcium paradox. J. Mol. Cell. Cardiol. 10, 991–1002 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    SINGAL, P.K., MATSUKUBO, M.P. & DHALLA, N.S. Calcium-related changes in the ultrastructure of mammalian myocardium. Br. J. Exp. Pathol. 60, 96–106 (1979).PubMedGoogle Scholar
  23. 23.
    SORDAHL, L.A. & SCHWARTZ, A. Effects of dipyridamole on heart muscle mitochondria. Mol. Pharmacol. 3, 509–515 (1967).PubMedGoogle Scholar
  24. 24.
    SULAKHE, P.V. & DHALLA, N.S. Excitation-contraction coupling in heart VII. Calcium accumulation in subcellular particles in congestive heart failure. J. Clin. Invest. 50, 1019–1027 (1970).CrossRefGoogle Scholar
  25. 25.
    TAUSSKY, H.H. & SHORR, E.A. A microclorimetric method for the determination of inorganiz phosphorus. J. Biol. Chem. 202, 675–685 (1953).PubMedGoogle Scholar
  26. 26.
    YATES, J.C. & DHALLA, N.S. Structural and functional changes associated with failure and recovery of hearts after perfusion with Ca2+ — free medium. J. Mol. Cell. Cardiol. 7, 91–103 (1975).PubMedCrossRefGoogle Scholar
  27. 27.
    ZIMMERMAN, A.N.E., DAEMS, W., HULSMANN, W.C., SNIJDER, J., WISSE, E. & DURRER, D. Morphological changes of heart muscle caused by successive perfusion with calcium-free and calcium-containing solutions (calcium paradox). Cardiovasc. Res. 1, 201–209 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • N. S. Dhalla
    • 1
  • J. N. Singh
    • 1
  • D. B. McNamara
    • 1
  • A. Bernatsky
    • 1
  • A. Singh
    • 1
  • J. A. C. Harrow
    • 1
  1. 1.Experimental Cardiology Laboratory, Department of Physiology, Faculty of MedicineUniversity of ManitobaWinnipegCanada

Personalised recommendations