Molecular Analyses of MHC Antigens

  • O. Kämpe
  • D. Larhammar
  • K. Wiman
  • L. Schenning
  • L. Claesson
  • K. Gustafsson
  • S. Pääbo
  • J. J. Hyldig-Nielsen
  • L. Rask
  • P. A. Peterson
Part of the Nobel Foundation Symposia Published by Plenum book series (NOFS, volume 55)


The major histocompatibility complex (MHC) has an essential role in the immune system. In a direct manner some of the MHC antigens, the class I molecules, seem to be involved in combatting virus-infections inasmuch as MHC antigens on virus-infected cells are part of the target for T-killer cells. Such T-cell killing is generally restricted to the virus and one or more of the class I molecules of the infected cell (see ref. 1). Whether one T-cell receptor jointly recognizes a virus product in association with a class I antigen or whether separate T-cell receptors independently recognize the virus product and the class I antigen, respectively, is not yet resolved (for a recent review see ref. 2). In this paper we will discuss our approach to analyze this issue.


Major Histocompatibility Complex Virus Protein Predicted Amino Acid Sequence Major Histocompatibility Complex Antigen Human Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.C. Doherty, R.V. Blanden, and R.M. Zinkernagel, Specificity of virus-immune effector T-cells for H-2K or H-2D. Compatible interactions: Implications for H-antigen diversity. Transpl. Rev. 29: 89–123 (1976)Google Scholar
  2. 2.
    P. Matzinger, A one-receptor view of T-cell behaviour, Nature 292: 497–501 (1981)PubMedCrossRefGoogle Scholar
  3. 3.
    R.W. Thomas, L. Clement, E.M. Shevach, T lymphocyte stimulation by hapten-conjugated macrophages. Immunol. Rev. 40: 181–204 (1978)PubMedCrossRefGoogle Scholar
  4. 4.
    D.H. Katz, B. Benacerraf, Genetic control of lymphocyte interactions and differentiation. In: “The role of products of the histocompatibility gene complex in immune responses”. D.H. Katz, and B. Benacerraf (eds.) Academic Press, London, pp. 355–385 (1976)Google Scholar
  5. 5.
    T. Tada and J. Taniguchi, In: “The role of products of the histocompatibility gene complex in immune responses”. D.H. Katz, and B. Benacerraf (eds.) Academic Press, New York p. 531(1976)Google Scholar
  6. 6.
    J.F.A.P. Miller, M.A. Vadas, A. Whitelaw, A., and J. Gamble, H-2 gene complex restricts transfer of delayed-type hypersensitivity in mice. Proc. Natl.Acad. Sci. USA. 72: 5095 (1975)PubMedCrossRefGoogle Scholar
  7. 7.
    K. Gustafsson, P. Bill, D. Larhammar, K. Wiman, L. Claesson, L. Schenning, B. Servenius, J. Sundelin, L. Rask, and P.A. Peterson, Isolation and identification of a cDNA clone coding for an HLA-DR transplantation antigen chain. Scand J. Immunol. (in press)Google Scholar
  8. 8.
    K. Wiman, D. Larhammar, L. Claesson, K. Gustafsson, L. Schenning, P. Bill, J. Böhme, M. Denaro, B. Dobberstein, U. Hammerling, S. Kvist, B. Servenius, J. Sundelin, P.A. Peterson, and L. Rask, Isolation and identification of a cDNA clone corresponding to an HLA-DR antigen ß-chain, Proc. Natl. Acad. Sci. USA 79: 1703–1707 (1982)PubMedCrossRefGoogle Scholar
  9. 9.
    D.Larhammar, K. Wiman, L. Schenning, L. Claesson, K. Gustafsson, P.A. Peterson, and L. Rask, Evolutionary relationship between HLA-DR antigen ß chains, HLA-A, B, C antigen subunits and immunoglobulin chains. Scand J. Immunol. 14: 617–622 (1981)PubMedCrossRefGoogle Scholar
  10. 10.
    D. Larhammar, L. Schenning, K. Gustafsson, K. Wiman, L. Claesson, L. Rask, and P.A. Peterson. The complete amino acid sequence of an HLA-DR antigen-like ß chain as predicted from the nucleotide sequence: Similarities with immunoglobulins and HLA-A, B, C antigens. Proc. Natl. Acad. Sci. USA 79: 3687–3691 (1982)PubMedCrossRefGoogle Scholar
  11. 11.
    D. Larhammar, K. Gustafsson, L. Claesson, P. Bill. K. Wiman, L. Schenning, J. Sundelin. E. Widmark. P.A. Peterson, and L. Rask, HLA-DR transplantation antigen chain is a member of the same protein superfamily as the immunoglobulins. Cell 30: 153–161 (1982)PubMedCrossRefGoogle Scholar
  12. 12.
    F.S. Walsh, and M.,J. Crumpton, Orientation of cell-surface antigens in the lipid bilayer of lymphocyte plasma membrane. Nature 269: 307–311Google Scholar
  13. 13.
    J.F. Kaufman, and J.L. Strominger, Both chains of HLA-DR bind to the membrane with a penultimate hydrophobic region and the heavy chain is phosphorylated at its hydrophilic carboxyl terminus. Proc. Natl. Acad. Sci. USA 76: 6304–6308 (1979)PubMedCrossRefGoogle Scholar
  14. 14.
    K.W. Moore, B.T. Sher, Y.H. Sun, K.A. Eahle, and L. Hood, DNA sequence of a gene encoding a BALB/C mouse L transplantation antigen, Science 215: 679–683 (1982)PubMedCrossRefGoogle Scholar
  15. 15.
    M. Malissen, B. Malissen, and B.R. Jordan, Exon/intron organization and complete nucleotide sequence of an HLA gene. Proc. Natl. Acad. Sci. USA 79: 893–897 (1982)PubMedCrossRefGoogle Scholar
  16. 16.
    M. Steinmetz, K.W. Moore, J.G. Frelinger, B. Taylor Sher, F.W. Shen, E.A. Boyse, and L. Hood, A pseudogene homologous to mouse transplantation antigens: Transplantation antigens are encoded by eight exons that correlate with protein domains. Cell 25: 683–692 (1981)PubMedCrossRefGoogle Scholar
  17. 17.
    J.W. Uhr, J.D. Capra, E.S. Vitetta, and R.G. Cook, Organization of the immune response genes. Both subunits of I-A and I-E/C molecules are encoded within the I region, Science 206: 292–297 (1979)PubMedCrossRefGoogle Scholar
  18. 18.
    R.S. Accolla, N. Gross, S. Carrel, and G. Corte, Distinct forms of both and 13 subunits are present in the human Ia molecular pool. Proc. Natl. Acad. Sci USA 78: 4549–4551 (1981)PubMedCrossRefGoogle Scholar
  19. 19.
    L.M. Nadler, P. Stashenko, R. Hardy, K.J. Tomaselli, E.J. Yunis, S.F. Schlossman, and J.M. Peao, Monoclonal antibody identifies a new Ia-like (p29, 34) polymorphic system linked to the HLA-D/DR region. Nature 290: 591–593Google Scholar
  20. 20.
    S. Shaw, P. Kavathas, M.S. Pollack, D. Charmot, and C. Mawas, Family studies define a new histocompatibility locus, SB, between HLA-DR and GLO. Nature, 293: 745–747 (1981)PubMedCrossRefGoogle Scholar
  21. 21.
    H. Kratzin, C.-Y. Yang, H. Götz, E. Pauly, S. Kölbel, G. Egert, F.P. Thinnes, P. Wernet, P. Altevogt, and N. Hilchmann, Primary structure of class II human histocompatibility antigens. Hoppe-Seyler’s Z. Physiol. Chem. 362: 1665–1669 (1982)Google Scholar
  22. 22.
    L. Trägålrdh, L. Rask, K. Wiman, J. Fohlman, and P.A. Peterson, Complete amino acid sequence of pooled papain-solubilized HLA-A, B, C antigens: Relatedness to immunoglobulins and internal homologies. Proc. Natl. Acad. Sci. USA 77: 1129–1133 (1980)CrossRefGoogle Scholar
  23. 23.
    L. Trägålrdh, O. Kämpe, U. Hammerling, J. Böhme, L. Claesson, L. Rask, and P.A. Peterson, Bo microglobulin and transplantation antigens. Scand. J. clin. Lab. Invest. 40, Suppl. 154 (1980)Google Scholar
  24. 24.
    H.T. Orr, D. Lancet, R.J. Robb, J.A. Lopez de Castro, and J.L. Strominger, The heavy chain of human histocompatibility antigen HLA-B7 contains an immunoglobulin-like region. Nature 282: 266–270, (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    L. Trägålrdh, L. Rask, K. Wiman, J. Fohlman, and P.A. Peterson, Amino acid sequence of an immunoglobulin-like HLA antigen heavy chain domain. Proc. Natl. Acad. Sci. USA 76: 5839–5842 (1979)CrossRefGoogle Scholar
  26. 26.
    L. Trägålrdh, B. Curman, K. Wiman, L. Rask, and P.A. Peterson, Chemical, physical-chemical, and immunological properties of papain-solubilized human transplantation antigens. Biochemistry 18: 2218–2226Google Scholar
  27. 27.
    D. Lancet, P. Parham, and J.L. Strominger, Heavy chain of HLA-A and HLA-B antigens is conformationally labile. A possible role for β2-microglobulin, Proc. Natl. Acad. Sci. USA 76: 3844–3848 (1979)PubMedCrossRefGoogle Scholar
  28. 28.
    K. Wiman, L. Claesson, L. Rask, L. Trägardh, and P.A. Peterson, Purification and partial amino acid sequence of papain-solubilized HLA-DR transplantation antigens, Biochemistry (in press)Google Scholar
  29. 29.
    R.J. Poljak, Three-dimensional structure, function and genetic control of immunoglobulins, Nature 256: 373–376 (1975)PubMedCrossRefGoogle Scholar
  30. 30.
    P. De Meyts, E. van Obberghen, J. Roth, A. Wollmer, and D. Brandenburg, Mapping of the residues responsible for the negative cooperativity of the receptor-binding region of insulin, Nature 273: 504–509 (1978)PubMedCrossRefGoogle Scholar
  31. 31.
    P.P. Jones, D.B. Murphy, D. Hewgill, and H.O. McDevitt, Detection of a common polypeptide chain in I-A and I-E subregion immunoprecipitates. Mol. Immunol. 16: 51–60 (1979)PubMedCrossRefGoogle Scholar
  32. 32.
    D.J. Charron, and H.O. McDevitt, Analysis of HLA-D region-associated molecules with monoclonal antibody. Proc. Natl. Acad. Sci. USA, 76: 6567–6571 (1979)PubMedCrossRefGoogle Scholar
  33. 33.
    S. Kvist, K. Wiman, L. Claesson, P.A. Peterson, and B. Dobberstein, Membrane insertion and oligomeric assembly of HLA-DR histocompatibility antigens. Cell 29: 61–69 (1982)PubMedCrossRefGoogle Scholar
  34. 34.
    S. Kvist, L. Östberg, H. Persson, L. Philipsson, and P.A. Peterson, Molecular association between transplantation antigens and a cell surface antigen in an adenovirus-transformed cell line. Proc. Natl. Acad. Sci. USA 75: 5674–5678 (1978)PubMedCrossRefGoogle Scholar
  35. 35.
    S.R. Ross, S.J. Flint, and A.J. Levine, Identification of the adenovirus early proteins and their genomic map positions. Virology 100: 419–432 (1980)PubMedCrossRefGoogle Scholar
  36. 36.
    J. Hérissé, G. Courtois, and F. Galivert, Nucleotide sequence of the EcoRI D fragment of adenovirus 2-genome. Nucleic Acids Res. 8: 2173–2192 (1980)PubMedCrossRefGoogle Scholar
  37. 37.
    H.L. Ploegh, H.T. Orr, and J.L. Strominger, Major histocompatibility antigens: The human (HLA-A, -B, -C) and murine (H-2K, H-2D) class I molecules. Cell 24, 287–299 (1981)PubMedCrossRefGoogle Scholar
  38. 38.
    J.L. Goldstein, G.W.E. Anderson, and M.S. Brown, Coated pits, coated vesicles, and receptormediated endocytosis. Nature 279, 679–685 (1979)PubMedCrossRefGoogle Scholar
  39. 39.
    F.R. Maxfield, J. Schlessinger, Y.L. Shechter, I. Pastan, and M.C. Willingham, Collection of insulin, EGF and 2-macroglobulin in the same patches on the surface of cultured fibroblasts and common internalization. Cell, 14: 805–810 (1978)PubMedCrossRefGoogle Scholar
  40. 40.
    R.G.W. Anderson, E. Vasile, R.J. Mello, M.S. Brown, and J.L. Goldstein, Immunocytochemical visualization of coated pits and vesicles in human fibroblasts: Relation to low density lipoprotein receptor distribution. Cell 15: 919–933 (1978)PubMedCrossRefGoogle Scholar
  41. 41.
    S.K. Basu, J.L. Goldstein, R.G.W. Anderson, and M.S. Brown, Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell 24: 493–502 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • O. Kämpe
    • 1
  • D. Larhammar
    • 1
  • K. Wiman
    • 1
  • L. Schenning
    • 1
  • L. Claesson
    • 1
  • K. Gustafsson
    • 1
  • S. Pääbo
    • 1
  • J. J. Hyldig-Nielsen
    • 1
  • L. Rask
    • 1
  • P. A. Peterson
    • 1
  1. 1.Dept. of Cell ResearchThe Wallenberg LaboratoryUppsalaSweden

Personalised recommendations