The Formation of Antibody Variable Region Genes

  • Philip Leder
Part of the Nobel Foundation Symposia Published by Plenum book series (NOFS, volume 55)


The solution of the problem of how immunoglobulin genes produce antibody molecules is the result of extraordinary developments in the fields of immunology and molecular biology. The immunochemists, of course, discovered the interesting features of the structure of antibody molecules and proposed a variety models to account for the structural and organizational features of this remarkable class of proteins. The molecular biologists, on the other hand, set out to develop the genetic approaches that would—in the end—put these theories to the test. Six or seven years ago neither of these groups could have anticipated the spectacular success that the development of recombinant DNA technology has made possible. Many of the questions raised by immunologists are now answered in concrete terms. We know how immunoglobulin genes are encoded in germline DNA and how this structure is altered in antibody producing cells. We know that several powerful mechanisms exist to shuffle bits of DNA and RNA in somatic cells and we know how these mechanisms act to create diversity. We also suspect that we are viewing mechanisms that have significance beyond the immune system itself.


Heavy Chain Versus Region Human Immunoglobulin Immunoglobulin Gene Light Chain Gene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Seidman, A. Leder, M.H. Edgell, F. Polsky, S.M. Tilghman, D.C. Tiemeier, and P. Leder, Multiple related mouse immunoglobulin variable region genes identified by cloning and sequence analyses. Proc. Natl. Acad. Sci. U.S.A. 75: 3881 (1978).PubMedCrossRefGoogle Scholar
  2. 2.
    J.G. Seidman and P. Leder, The arrangement and rearrangement of antibody genes. Nature 276: 790 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    G. Matthyssens, and T.H. Rabbitts, Structure and multiplicity of genes for the human immunoglobulin heavy chain variable region. Proc. Natl. Acad. Sci. U.S.A. 77: 6561 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    Bentley, D.L. and T.H. Rabbits, Human immunoglobulin variable region genes-DNA sequences of two V K genes and a pseudogene. Nature 288: 730 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    Y. Nishioka and P. Leder, Organization and complete sequence of identical embryonic and plasmacytoma K V-region genes. J. Biol. Chem. 255: 3691 (1980).PubMedGoogle Scholar
  6. 6.
    D. Givol, R. Zakut, K.Effron, G. Rechavi, D. Ram, and J.B. Cohen, Diversity of germ-line immunoglobulin VH genes. Nature 292: 426 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    D.L. Bentley and T.H. Rabbitts, Human V K immunoglobulin gene number: implications for the origin of antibody diversity. Cell 24: 613 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    J.G. Seidman, A. Leder, M. Nau, B. Norman, and P. Leder, Antibody diversity. Science 202: 11 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    P. Leder, J.G. Seidman, E.E. Max, Y. Nishioka, A. Leder, B. Norman, and M. Nau, The arrangement, rearrangement and origin of immunoglobulin genes, in “Miami Winter Symposium,” Vol. 16, T.R. Russell, K. Bren, H. Faber, and J. Schalley, eds., pp. 133–145 (1979).Google Scholar
  10. 10.
    W. Gilbert, Why genes in pieces? Nature 271: 501 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    E.W. Silverton, M.A. Navia, and D.R. Davies, Three-dimensional structure of an intact human immunoglobulin. Proc. Natl. Acad. Sci. U.S.A. 74: 5140 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    E.E. Max, J.V. Maizel, Jr., and P. Leder, The nucleotide sequence of a 5.5 kilobase DNA segment containing the mouse immunoglobulin J and C region genes. J. Biol. Chem. 256: 5116 (1981).Google Scholar
  13. 13.
    H. Sakano, K. Huppi, G. Heinrich, and S. Tonegawa, Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 280: 288 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    P.A. Hieter, J.V. Maizel, Jr., and P. Leder, Evolution of human immunoglobulinK J region genes. J. Biol. Chem. 257: 1516 (1982).Google Scholar
  15. 15.
    P.A. Hieter, E.E. Max, J.G. Seidman, J.V. Maizel, Jr., and P. Leder, Cloned human and mouse K immunoglobulin constant and J region genes conserve homology in functional segments. Cell 22: 197 (1980).Google Scholar
  16. 16.
    J. Miller, A. Bothwell, and U. Storb, Physical linkage of the constant region genes for immunoglobulins lambda I and lambda II. Proc. Natl. Acad. Sci. U.S.A. 78: 3829 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    B. Blomberg, A. Traunecker, H. Eisen, and S. Tonegawa, Organization of four mouse X light chain immunoglobulin genes. Proc. Natl. Acad. Sci. U.S.A. 78: 3765 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    P.A. Hieter, G.F. Hollis, S.J. Korsmeyer, T.A. Waldmann, and P. Leder, Clustered arrangement of immunoglobulin X constant regions in man. Nature 294: 536 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    J.V. Ravetch, U. Siebenlist, S. Korsmeyer, T. Waldmann, and P. Leder, Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell 27: 583 (1981).Google Scholar
  20. 20.
    P. Early, H. Huang, M. Davis, K. Calame, and L. Hood, An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH. Cell 19: 981 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    R. Maki, A. Traunecker, H. Sakano, W. Roeder, and S. Tonegawa, Exon shuffling generates an immunoglobulin heavy chain gene. Proc. Natl. Acad. Sci. U.S.A. 77: 2138 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    Y. Kurosawa, H. von Boehmer, W. Haas, H. Sakano, A. Trauneker, and S. Tonegawa, Identification of D segments of immunoglobulin heavy-chain genes and their rearrangement in T lymphocytes. Nature 290: 565 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    U. Siebenlist, J.V. Ravetch, S. Korsmeyer, T. Waldmann, and P. Leder, Human immunoglobulin D segments encoded in tandem multigenic families. Nature 294: 631 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    J.G. Seidman, M.M. Nau, B. Norman, S.-P.Kwan, M. Scharff, and P. Leder, Immunoglobulin V/J recombination is accompanied by deletion of joining site and variable region segments. Proc. Natl. Acad. Sci. U.S.A. 77: 6022 (1980).Google Scholar
  25. 25.
    W. Altenburger, M. Steinmetz, and H.G. Zachau, Functional and non-functional joining in immunoglobulin light chain genes of a mouse myeloma. Nature 287: 603 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Steinmetz, W. Altenburger, and H.G. Zachau, A rearranged DNA sequence possibly related to the translocation of immunoglobulin gene segments. Nucleic Acids Res. 8: 1709 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    A. Walfield, E. Selsing, B. Arp, and U. Storb, Misalignent of V and J gene segments resulting in a nonfunctional immunoglobulin gene. Nucleic Acids Res. 9: 1101 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    J. Hochtl, C.R. Muller, and H.G. Zachau, Recombined flanks of the variable and joining segments of immunoglobulin genes. Proc. Natl. Acad. Sci. U.S.A. 79: 1383 (1982).PubMedCrossRefGoogle Scholar
  29. 29.
    B.G., VanNess, C. Coleclough, R.P. Perry, and M. Weigert, DNA between variable and joining gene segments of immunoglobulin K light chain is frequently retained in cells that rearrange the K locus. Proc. Natl. Acad. Sci. U.S.A. 79: 262 (1982).CrossRefGoogle Scholar
  30. 30.
    E.E. Max, J.G. Seidman, H.I. Miller, and P. Leder, Variation in the crossover point of K immunoglobulin gene V-J recombination: evidence from a cryptic gene. Cell 21: 793 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    P.A. Hieter, S.J. Korsmeyer, T.A. Waldmann, and P. Leder, Human immunoglobulin K light chain genes are deleted or rearranged in x-producing B cells. Nature 290: 368 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    S. Korsmeyer, P.A. Hieter, J.V. Ravetch, D.G. Poplack, T.A. Waldmann, and P. Leder, Developmental hierarchy of immunoglobulin gene rearrangements in human leukemic pre-B cells. Proc. Natl. Acad. Sci. U.S.A. 78: 7096 (1981).PubMedCrossRefGoogle Scholar
  33. 33.
    S.J. Korsmeyer, P.A. Hieter, J.V. Ravetch, D.G. Poplack, P. Leder, and T.A. Waldmann, Patterns of immunoglobulin gene arrangement in human lymphotic leukemias, in “Leukemia Markers”, W. Knapp, ed., Academic Press, London, pp. 85–97 (1981).Google Scholar
  34. 34.
    F. Alt, N. Rosenberg, S. Lewis, E. Thomas, and D. Baltimore, Organization and reorganization of immunoglobulin genes in A-MULV-transformed cells: rearrangement of heavy but not light chain genes. Cell 27: 381 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    M. Cohn, The take home lesson, New York Academy of Sciences 190: 529 (1972).CrossRefGoogle Scholar
  36. 36.
    P. Gearhart, N.D. Joìndon, R. Douglas, and L. Hood, IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts. Nature 291: 29 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    E. Selsing and U. Storb, Somatic mutation of immunoglobulin light-chain variable-region genes. Cell 25: 47 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    M. Pach, J. Höchtl, H. Schnell, and H.G. Zachau, Differences between germ-line and rearranged immunoglobulin V K coding sequences suggest a localized mutation mechanism. Nature 291: 668 (1981).CrossRefGoogle Scholar
  39. 39.
    J. Sims, T.H. Rabbitts, P. Estess, C. Slaughter, P.W. Tucker, and J.D. Capra, Somatic mutation in genes for the variable portion of the immunoglobulin heavy chain. Science 216: 309 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    H.K. Gershenfeld, A. Tsukamoto, I.L. Weissman, and R. Joho, Somatic diversification is required to generate the V K genes of MOPC 511 and MOPC 167 myeloma proteins. Proc. Natl. Acad. Sci. U.S.A. 78: 7674 (1981).PubMedCrossRefGoogle Scholar
  41. 41.
    S. Crews, J. Griffin, H. Huang, K. Calame, and L. Hood, A single VH gene segment encodes the immune response to phosphorylcholine: somatic mutation is correlated with the class of antibody. Cell 25: 59 (1981).PubMedCrossRefGoogle Scholar
  42. 42.
    A.L. Bothwell, M. Paskind, M. Reth, T. Imanishi-Kari, K. Rajewsky, and D. Baltimore, Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a gamma 2a variable region. Cell 24: 625 (1981).PubMedCrossRefGoogle Scholar
  43. 43.
    J. Zeig, and M. Simon, Analysis of the nucleotide sequene of an invertible controlling element. Proc. Natl. Acad. Sci. U.S.A. 77: 4196 (1980).CrossRefGoogle Scholar
  44. 44.
    I.R. Kirsch, J.V. Ravetch, S.-P., Kwan, E.E. Max, R.L. Ney, and P. Leder, Multiple immunoglobulin switch region homologies outside the heavy chain constant region locus. Nature 293: 585 (1981).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Philip Leder
    • 1
  1. 1.Department of GeneticsHarvard Medical SchoolBostonUSA

Personalised recommendations