Characterization of Cytochrome P-450 in Studies of Insecticide Resistance

  • Ernest Hodgson
  • Arun P. Kulkarni


The importance of cytochrome P-450 (P-450*)-dependent monooxygenase systems in the metabolism of xenobiotics, including insecticides, is well established and has been frequently reviewed (e.g., Estabrook et al., 1973; Hodgson and Tate, 1976; Hodgson and Dauterman, 1980; Kulkarni and Hodgson, 1980a; Nakatsugawa and Morelli, 1976; Ullrich, 1977). Although reviews are often restricted to investigations carried out on mammals, such systems have been described in many insects, and their importance is widely recognized (for references see reviews by Agosin and Perry, 1974; Agosin, 1976; Hodgson, 1976; Kulkarni and Hodgson, 1976d; Wilkinson and Brattsten, 1972). In one or two species of insect, such as the house fly, Musca domestica, and the southern armyworm, Spodopteva evidania, P-450 and its related enzymes have been described in some detail.


Difference Spectrum Insecticide Resistance MUsca Domestica Microsomal Cytochrome Chromosome Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agosin, M., 1976, Insect cytochrome P-450, Mol. Cell. Biochem., 12:33.PubMedCrossRefGoogle Scholar
  2. Agosin, M., and Perry, A. S., 1974, Microsomal mixed-function oxidases, in: “The Physiology of Insecta,” M. Rockstein, ed., Vol. 5, pp. 537–596, Academic Press, New York.Google Scholar
  3. Bell, D. Y., and Hodgson, E., 1977a, Methods for Polyacrylamide gel electrophoresis of mammalian liver cytochrome P-450 in the presence of sodium dodecyl sulfate: A critique, Gen. Pharmacol., 8:113.CrossRefGoogle Scholar
  4. Bell, D. Y., and Hodgson, E., 1977b, SDS-Polyacrylamide gel electrophoresis of hepatic cytochrome P-450 from normal, 3-methylchol-anthrene and phenobarbital treated mice, Gen. Vhavmaool., 8:121.Google Scholar
  5. Brattsten, L. B., Wilkinson, C. F., and Root, M. M., 1976, Microsomal hydroxylation of aniline in the southern armyworm, Spodoptera eridania, Insect Biochem., 6:615.CrossRefGoogle Scholar
  6. Brattsten, L. B., Wilkinson, C. F., and Eisner, T., 1977, Herbivore-plant interactions: Mixed-function oxidases and secondary plant substances, Science, 196:1349.PubMedCrossRefGoogle Scholar
  7. Capdevila, J., and Agosin, M., 1977, Multiple forms of house fly cytochrome P-450, in: “Microsomes and Drug Oxidations,” V. Ullrich, ed., pp. 144–151, Pargamon Press, Oxford.Google Scholar
  8. Capdevila, J., Morello, A., Perry, A. S., and Agosin, M., 1973a, Effect of phenobarbital and naphthalene on some components of the electron transport system and hydroxylating activity of housefly microsomes, Biochem., 12:1445.CrossRefGoogle Scholar
  9. Capdevila, J., Perry, A. S., Morello, A., and Agosin, M., 1973b, Some spectral properties of cytochrome P-450 from microsomes isolated from control, phenobarbital and naphthalene treated houseflies, Biochem. Biophys. Acta, 314:93.CrossRefGoogle Scholar
  10. Capdevila, J., Perry, A. S., and Agosin, M., 1974, Spectral and catalytic properties of cytochrome P-450 from a diazinon-resistant housefly strain, Chem.-Biol. Interact., 9:105.PubMedCrossRefGoogle Scholar
  11. Capdevila, J., Ahmad, N., and Agosin, M., 1975, Soluble cytochrome P-450 from housefly microsomes. Partial purification and characterization of two hemoprotein forms, J. Biol. Chem., 250:1048.Google Scholar
  12. Chang, L. L., and Hodgson, E., 1975, Biochemistry of detoxication in insects. Microsomal mixed function oxidase activity in the housefly, Musca domestica, Insect Biochem., 5:93.CrossRefGoogle Scholar
  13. Dahl, A. R., and Hodgson, E., 1977, Complexes of stannous fluoride and other group IVB dihalides with mammalian hemoproteins, Science, 197:1376.PubMedCrossRefGoogle Scholar
  14. Dahl, A. R., and Hodgson, E., 1978, Complexes of trivalent oxygenated phosphorus compounds with cytochrome P-450 and cytochrome P-420: The origin of double Soret spectra, Chem.-Biol. Interact., 21:137.PubMedCrossRefGoogle Scholar
  15. Dahl, A. R., and Hodgson, E., 1979, The interaction of aliphatic analogs of methylenedioxyphenyl compounds with cytochromes P-450 and P-420, Chem.-Biol. Interact., 27:163.PubMedCrossRefGoogle Scholar
  16. Dallner, G., 1963, Studies on the structural and enzymic organization of the membraneous elements of liver microsomes, Acta Pathol. Microbiol. Scand., Suppl. 166.Google Scholar
  17. Estabrook, R. W., and Werringloer, J., 1979, The microsomal enzyme system responsible for the oxidative metabolism of many drugs, in: “The Induction of Drug Metabolism,” R. W. Estabrook and E. Lidenlaub, eds., pp. 187–199, Schattauer Verlag, Stuttgart and New York.Google Scholar
  18. Estabrook, R. W., Gillette, J. R., and Leibman, K. N., editors, 1973, “Microsomes and Drug Oxidations,” Williams and Wilkins, Baltimore, Maryland.Google Scholar
  19. Gilbert, M. D., and Wilkinson, C. F., 1975, An inhibitor of microsomal oxidation from gut tissues of the honey bee, Apis melli-fera, Comp. Biochem. Physiol., 50:613.CrossRefGoogle Scholar
  20. Gillette, J. R., Davis, D. C., and Sasame, H. A. 1972, Cytochrome P-450 and its role in drug metabolism, Ann. Rev. Pharmacol., 12:57.PubMedCrossRefGoogle Scholar
  21. Gould, F., and Hodgson, E., 1980, Mixed-function oxidase and glutathione transferase activity in last instar Eeliothis virescens larvae, Pestic. Biochem. Physiol., in press.Google Scholar
  22. Guengerich, F. P., 1979, Isolation and purification of cytochrome P-450 and the existence of multiple forms, Pharmacol. Therap., 6:99.CrossRefGoogle Scholar
  23. Hansen, L. G., and Hodgson, E., 1971, Biochemical characterization of insect microsomes: N- and O-demethylation, Biochem. Pharmacol., 20:1569.CrossRefGoogle Scholar
  24. Hlavica, P., 1972, Interaction of oxygen and aromatic amines with hepatic microsomal mixed-function oxidases, Biochem. Biophys. Acta, 273:318.PubMedCrossRefGoogle Scholar
  25. Hodgson, E., 1974, Comparative studies of cytochrome P-450 and its interaction with pesticides, in: “Survival in Toxic Environments,” M. A. Q. Khan and J. P. Bederka, eds., pp. 213–260, Academic Press, New York.Google Scholar
  26. Hodgson, E., 1976, Comparative toxicology: Cytochrome P-450 and mixed-function oxidase activity in target and nontarget organisms, Essays in Toxicology, 7:73.Google Scholar
  27. Hodgson, E., 1979, Comparative aspects of the distribution of cytochrome P-450-dependent monooxygenase systems: An overview, Drug Metabol. Rev., 10:15.CrossRefGoogle Scholar
  28. Hodgson, E., and Dauterman, W. C., 1980, Metabolism of toxicants: Phase one reactions, in: “Introduction to Biochemical Toxicology,” E. Hodgson and F. E. Guthrie, eds., Elsevier/North Holland, New York.Google Scholar
  29. Hodgson, E., and Philpot, R. M., 1974, Interaction of methylenedi-oxyphenyl (1,3-benzodioxole) compounds with enzymes and their effects on mammals, Drug Metabol. Rev., 3:231.CrossRefGoogle Scholar
  30. Hodgson, E., and Tate, L. G., 1976, Cytochrome P-450 interactions, in: “Insecticide Physiology and Biochemistry,” C. F. Wilkinson, ed., pp. 115–148, Plenum Press, New York.Google Scholar
  31. Hodgson, E., Täte, L. G., Kulkarni, A. P., and Plapp, F. W., 1974, Microsomal cytochrome P-450: Characterization and possible role in insecticide resistance in Musca domestica, J. Ag. Food Chem., 22:360.CrossRefGoogle Scholar
  32. Johnson, E. F., 1979, Multiple forms of cytochrome P-450: Criteria and significance, Rev. Biochem. Toxicol., 1:1.Google Scholar
  33. Krieger, R. I., and Wilkinson, C. F., 1969, Microsomal mixed-function oxidases in insects, 1. Localization and properties of an enzyme system effecting aldrin epoxidation in larvae of the southern armyworm, Biochem. Pharmacol., 18:1403.PubMedCrossRefGoogle Scholar
  34. Kulkarni, A. P., and Hodgson, E., 1975, Microsomal cytochrome P-450 from the housefly, Musca domestica: Assay and spectral characterization, Insect Biochem., 5:679.CrossRefGoogle Scholar
  35. Kulkarni, A. P., and Hodgson, E., 1976a, Spectral interactions of insecticide synergists with microsomal cytochrome P-450 from insecticide-resistant and susceptible houseflies, Pestic. Biochem. Physiol., 6:183.CrossRefGoogle Scholar
  36. Kulkarni, A. P., and Hodgson, E., 1976b, Effect of storage on the biochemistry of cytochrome P-450 from the housefly, Musca domestica, Insect Biochem., 6:89.CrossRefGoogle Scholar
  37. Kulkarni, A. P., and Hodgson, E., 1976c, Spectral characterization of microsomal cytochrome P-450 from the midgut of the tobacco hormworm, Manduca sexta, Insect Biochem., 6:385.CrossRefGoogle Scholar
  38. Kulkarni, A. P., and Hodgson, E., 1976d, Microsomal electron transport in the housefly, Musca domestica: A model for the study of detoxication systems in insects, Israel J. Entomol., 11:93.Google Scholar
  39. Kulkarni, A. P., and Hodgson, E., 1980a, Metabolism of insecticides by microsomal mixed-function oxidase systems, Pharmacol. Therap., in press.Google Scholar
  40. Kulkarni, A. P., and Hodgson, E., 1980b, Multiplicity of cytochrome P-450 in microsomal membranes from the housefly, Musca domestica, submitted to Biochem. Biophys. Acta. Google Scholar
  41. Kulkarni, A. P., Mailman, R. B., Baker, R. C., and Hodgson, E., 1974, Cytochrome P-450 difference spectra: Type II interactions in insecticide-resistant and susceptible houseflies, Drug Metabol. Disp., 2:309.Google Scholar
  42. Kulkarni, A. P., Mailman, R. B., and Hodgson, E., 1975, Cytochrome P-450 optical difference spectra of insecticides: A comparative study, J. Ag. Food Chem., 23:177.CrossRefGoogle Scholar
  43. Kulkarni, A. P., Smith, E., and Hodgson, E., 1976, Occurrence and characterization of microsomal cytochrome P-450 in several vertebrate and insect species, Comp. Biochem. Physiol., 54B:509.Google Scholar
  44. Kulkarni, A. P., Motoyama, N., Dauterman, W. C., and Hodgson, E., 1978, Inhibition of glutathione S-transferase by catecholamines and related compounds in the housefly, Bull. Environ. Contam. Toxicol., 20:277.CrossRefGoogle Scholar
  45. Levin, W., Botelho, L. M., Thomas, P. E., and Ryan, D. E., 1979, Purification and characterization of multiple forms of rat liver cytochrome P-450, in: “Fourth International Symposium Microsomes and Drug Oxidations,” pp. 1–106, Ann Arbor, Michigan.Google Scholar
  46. Mailman, R. B., Tate, L. G., Muse, K. E., Coons, L. B., and Hodgson, E., 1975, The occurrence of multiple forms of cytochrome P-450 in hepatic microsomes from untreated rats and mice, Chem.-Biol. Interact., 10:215.PubMedCrossRefGoogle Scholar
  47. Motoyama, N., and Dauterman, W. C., 1980, Glutathione S-transferases: Their role in the metabolism of organophosphorus insecticides, Rev. Bioohem. Toxicol., 2:249.Google Scholar
  48. Motoyama, N., Kulkarni, A. P., Hodgson, E., and Dauterman, W. C., 1978, Endogenous inhibitors of glutathione S-transferases in houseflies, Pestic. Bioohem. Physiol., 9:255.CrossRefGoogle Scholar
  49. Nakatsugawa, T., and Morelli, M. A., 1976, Microsomal oxidation and insecticide metabolism, in: “Insecticide Biochemistry and Physiology,” C. F. Wilkinson, ed., pp. 61–114, Plenum Press, New York.Google Scholar
  50. Omura, T., and Sato, R., 1964, The carbon monoxide binding pigment of liver microsomes. I. Evidence for its hemoprotein nature, J. Biol. Chem., 239:2370.PubMedGoogle Scholar
  51. Oppenoorth, F. J., and Welling, W., 1976, Biochemistry and physiology of resistance, in: “Insecticide Biochemistry and Physiology,” C. F. Wilkinson, ed., pp. 507–551, Plenum Press, New York.Google Scholar
  52. Orrenius, S., Berggen, M., Moldeus, P., and Krieger, R. I., 1971, Mechanism of inhibition of microsomal mixed-function oxidases by the gut contents inhibitor of the southern armyworm (Pro-denia eridania), Biochem. J., 124:427.PubMedGoogle Scholar
  53. Philpot, R. M., and Hodgson, E., 1971, Differences in cytochrome P-450s from resistant and susceptible houseflies, Chem.-Biol. Interact., 4:399.CrossRefGoogle Scholar
  54. Plapp, F. W., 1976, Biochemical genetics of insecticide resistance, Ann. Rev. Entomol., 21:179.CrossRefGoogle Scholar
  55. Plapp, F. W., and Casida, J. E., 1969, Genetic control of housefly NADPH-dependent oxidases: Relation to insecticide chemical metabolism and resistance, J. Econ. Entomol., 62:1174.PubMedGoogle Scholar
  56. Schenkman, J. B., Remmer, H., and Estabrook, R. W., 1967, Spectral studies of drug interaction with hepatic microsomal cytochrome, Mol. Pharmacol., 3:113.Google Scholar
  57. Schonbrod, R. D., and Terriere, L. C., 1971, Inhibition of housefly microsomal epoxidase by the eye pigment, xanthommatin, Pestic. Biochem. Physiol., 1:409.CrossRefGoogle Scholar
  58. Schonbrod, R. D., and Terriere, L. C., 1975, The solubilization and separation of two forms of microsomal cytochrome P-450 from the housefly, Musca domestica L., Biochem. Biophys. Res. Commun. 64:829.PubMedCrossRefGoogle Scholar
  59. Smith, S. L., Bollenbacher, W. C., Cooper, D. Y., Schleyer, H., Wielgus, J. J., and Gilbert, L. I., 1979, Ecdysone 20-monoxy-genase: Characterization of an insect cytochrome P-450-dependent steroid hydroxylase, Molec. Cell. Endocrinol., 15:111.PubMedCrossRefGoogle Scholar
  60. Stanton, R. H., Plapp, F. W., White, R. A., and Agosin, M., 1978, Induction of multiple cytochrome P-450 species in housefly microsomes SDS gel electrophoresis studies, Comp. Biochem. Physiol., 61B:297.Google Scholar
  61. Tate, L. G., Plapp, F. W., and Hodgson, E., 1973, Cytochrome P-450 difference spectra of microsomes from several insecticide-resistant and susceptible strains of housefly, Musca domestica L., Chem.-Biol. Interact., 6:237.PubMedCrossRefGoogle Scholar
  62. Tate, L. G., Plapp, F. W., and Hodgson, E., 1974, Genetics of cytochrome P-450 in two insecticide-resistant strains of the housefly, Musca domestica L., Biochem. Genetics, 11:49.CrossRefGoogle Scholar
  63. Terriere, L. C., and Schonbrod, R. D., 1976, Agruments against a fifth chromosomal factor in control of aldrin epoxidation and propoxur resistance in the Fc strain of the housefly, Pestic. Biochem. Physiol., 6:551.CrossRefGoogle Scholar
  64. Ullrich, V., 1977, “Microsomes and Drug Oxidations,” Pergamon Press, Oxford.Google Scholar
  65. Wilkinson, C. F., and Brattsten, L. B., 1972, Microsomal drug metabolizing enzymes in insects, Drug Metabol. Rev., 1:153.CrossRefGoogle Scholar
  66. Wilson, T. G., and Hodgson, E., 1972, Mechanism of microsomal mixed-function oxidase inhibitor from the housefly, Musca domestica L., Pestic. Biochem. Physiol., 2:64.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Ernest Hodgson
    • 1
  • Arun P. Kulkarni
    • 1
  1. 1.Department of EntomologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations