Advertisement

Methods of Genetic Analysis of Insecticide Resistance

  • Masuhisa Tsukamoto

Abstract

Insecticide resistance in insects was first genetically analyzed nearly 40 years ago when Dickson (1941) reported that resistance to HCN fumigation in the California red scale, Aonidietta auveantii, was inherited as a sex-linked, incompletely dominant character. Shortly following this, Yust et al. (1943) obtained similar results. In a modern sense, however, one may say that the age of insecticide resistance actually started with the initiation of worldwide usage of synthetic chlorinated hydrocarbon insecticides.

Keywords

Linkage Group Insecticide Resistance MUsca Domestica Juvenile Hormone Analog Piperonyl Butoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agatsuma, T., Shiroishi, T., and Takeuchi, T., 1977, Genetic studies on LDH isozymes in the house fly, Musca domestica, Japan. J. Genet., 52:149.CrossRefGoogle Scholar
  2. Baker, R. H., and Sakai, R. K., 1976, Male-determining factor on chromosome 3 in the mosquito, Culex tvitaeniovhynchus, J. Heved., 67:289.Google Scholar
  3. Baker, R. H., and Rabbani, H. G., 1970, Complete linkage in females of Culex tvitaeniovhynchus mosquitoes, J. Eeved.., 61:59.Google Scholar
  4. Baker, R. H., Sakai, R. K., and Mian, A., 1971, Linkage group-chromosome correlation in Culex tvitaeniovhynchus, Science, 171:585.PubMedCrossRefGoogle Scholar
  5. Bodenstein, G., 1939, Die Ausloslung von Modifikationen und Mutationen bei Musca domestica L., Roux’ Avch. Entwickle 140:614.CrossRefGoogle Scholar
  6. Bridges, C. B., and Brehme, K. S., 1944, “The Mutants of Dvosophila melanogastev,” Carnegie Inst. Washington Publ. 552, Washington, D.C.Google Scholar
  7. Brown, A. W. A., 1959, Inheritance of insecticide resistance and tolerance, Misc. Publ. Entomol. Soc. Amev., 1:20.Google Scholar
  8. Cerf, D. C., and Georghiou, G. P., 1974, Cross resistance to juvenile hormone analogs in insecticide-resistant strains of Musca domestica L., Pestic. Sci., 5:759.CrossRefGoogle Scholar
  9. Craig, G. B., and Hickey, W. A., 1967, Genetics of Aedes aegypti, in: “Genetics of Insect Vectors of Disease,” Wright, J. W., and Pal, R., ed., pp. 67–131, Elsevier, Amsterdam.Google Scholar
  10. Crow, J. F., 1954, Analysis of a DDT-resistant strain of Dvosophila, J. Econ. Entomol., 47:393.Google Scholar
  11. Devonshire, A. L., and Sawicki, R. M., 1975, The importance of the decreased susceptibility of acetylcholinesterase in the resistance to organophosphorus insecticides, in: “Environmental Quality and Safety,” Special Issue, Proc. 3rd Internat. Congr. Pestic. Chemists, Helsinki, p. 441.Google Scholar
  12. Dickson, R. C., 1941, Inheritance of resistance to HCN fumigation in the California red scale, Eilgardia, 13:515.Google Scholar
  13. Dittrich, V., 1972, Phenotypic expression of gene OP for resistance in two-spotted spider mites tested with various organophos-phates, J. Econ. Entomol., 65:1248.PubMedGoogle Scholar
  14. Farnham, A. W., 1973, Genetics of resistance of pyrethroid-selected houseflies, Musca domestica L., Pestic. Sci., 4:513.CrossRefGoogle Scholar
  15. Franco, M. G., and Oppenoorth, F. J., 1962, Genetical experiments on the gene for low aliesterase activity and organophosphate resistance in Musca domestica L., Entomol. Exp. Appl., 5:119.CrossRefGoogle Scholar
  16. Gargan, T. S., II, and Barr, A. R., 1977, Inheritance of an esterase locus in Culex pipiens, Ann. Entomol. Soc. Amer., 70:402Google Scholar
  17. Georghiou, G. P., 1965, Genetic studies on insecticide resistance, Adv. Vest Control Res., 6:171.Google Scholar
  18. Georghiou, G. P., 1969, Genetics of resistance to insecticides in houseflies and mosquitoes, Exp. Parasitol., 26:224.PubMedCrossRefGoogle Scholar
  19. Georghiou, G. P., and Pasteur, N., 1978, Electrophoretic esterase patterns in insecticide-resistant and susceptible mosquitoes, J. Econ. Entomol., 71:201.PubMedGoogle Scholar
  20. Georghiou, G. P., and Taylor, C. E., 1977a, Genetic and biological influences in the evolution of insecticide resistance, J. Econ. Entomol., 70:319PubMedGoogle Scholar
  21. Georghiou, G. P., and Taylor, C. E., 1977b, Operational influences in the evolution of insecticide resistance, J. Econ. Entomol., 70:653.PubMedGoogle Scholar
  22. Grigolo, A., and Oppenoorth, F. J., 1966, The importance of DDT-dehydrochlorinase for the effect of the resistance gene kdr in the housefly Musca domestica L., Genetica, 37:159.PubMedCrossRefGoogle Scholar
  23. Harrison, C. M., 1951, Inheritance of resistance to DDT in the housefly, Musca domestica L., Nature, 167:855.PubMedCrossRefGoogle Scholar
  24. Hiroyoshi, T., 1960, Some new mutants and linkage groups of the house fly, J. Econ. Entomol., 53:985.Google Scholar
  25. Hiroyoshi, T., 1961, The linkage map of the house fly, Musca domestica L., Genetics, 46:1373.PubMedGoogle Scholar
  26. Horoyoshi, T., 1964, Sex-limited inheritance and abnormal sex ratio in strains of the housefly, Genetics, 50:373.Google Scholar
  27. Hiroyoshi, T., 1977, Some new mutants and revised linkage maps of the housefly, Musca domestica L., Japan. J. Genet., 52:275.CrossRefGoogle Scholar
  28. Hiroyoshi, T., and Fukumori, Y., 1977, On the IIIM-type houseflies frequently appeared in Japan, Japan. J. Genet., 53:443 (Abstr. in Japanese).Google Scholar
  29. Hiroyoshi, T., and Fukumori, Y., 1978, On the sex-determination in wild populations of the housefly, Japan. J. Genet., 54:420 (Abstr. in Japanese).Google Scholar
  30. Hoskins, W. M., and Gordon, H. T., 1956, Arthropod resistance to chemicals, Ann. Rev. Entornol., 1:89.CrossRefGoogle Scholar
  31. Hoyer, R. F., and Plapp, F. W., Jr., 1966, A gross genetic analysis of two DDT-resistant house fly strains, J. Econ. Entornol., 59:495.Google Scholar
  32. Hoyer, R. F., and Plapp, F. W., Jr., 1968, Insecticide resistance in the house fly: Identification of a gene that confers resistance to organotin insecticides and acts as an intensifier of parathion resistance., J. Eoon. Entornol., 61:1269.Google Scholar
  33. Hoyer, R. F., Plapp, F. W., and Orchard, R. D., 1965, Linkage relationships of several insecticide resistance factors in the housefly (Musca domestica L.), Entornol. Exp. Appl., 8:65.CrossRefGoogle Scholar
  34. Iqbal, M. P., Tahir, M. K., Sakai, R. K., and Baker, R. H., 1973, Linkage groups and recombination in the malaria mosquito, J. Hered., 64:133.PubMedGoogle Scholar
  35. Kerr, R. W., 1960, Sex-limited DDT-resistance in houseflies, Nature, 185:868.CrossRefGoogle Scholar
  36. Kerr, R. W., 1961, Inheritance of DDT resistance involving the Y chromosome in the housefly (Musca domestica L.), Aust. J. Biol. Sci., 14:605.Google Scholar
  37. Kerr, R. W., 1970, Inheritance of DDT resistance in a laboratory colony of the housefly, Musca domestica, Aust. J. Biol. Sci., 23:377.Google Scholar
  38. Khan, M. A. Q., 1970, Genetic and biochemical characteristics of cyclodiene epoxidase in the housefly, Biochem. Pharmacol., 19:903.PubMedCrossRefGoogle Scholar
  39. Khan, M. A. Q., Chang, J. L., Sutherland, D. J., Rosen, J. D., and Kamal, A., 1970, House fly microsomal oxidation of some foreign compounds, J. Econ. Entornol., 63:1807.Google Scholar
  40. Khan, M. A. Q., Morimoto, R. I., Bederka, J. P., Jr., and Runnels, J. M., 1973, Control of the microsomal mixed-function oxidase by Ox 2 and Ox 5 genes in houseflies, Biochem. Genet., 10:243.PubMedCrossRefGoogle Scholar
  41. Kitzmiller, J. B., 1976, Genetics, cytogenetics, and evolution of mosquitoes, Adv. Genet., 18:315.PubMedCrossRefGoogle Scholar
  42. Laven, H., 1967, Formal genetics of Culex pipiens, in: “Genetics of Insect Vectors of Disease,” Wright, J. W., and Pal, R., ed., pp. 17–65, Elsevier, Amsterdam.Google Scholar
  43. Lewis, J. B., 1969, Detoxication of diazinon by subcellular fractions of diazinon-resistant and susceptible houseflies, Nature, 224:917.PubMedCrossRefGoogle Scholar
  44. Lichtwardt, E. T., 1964, A mutant linked to the DDT-resistance of an Illinois strain of house flies, Entornol. Exp. Appl., 7:296.CrossRefGoogle Scholar
  45. Lindsley, D. L., and Grell, E. H., 1967, “Genetic Variations of Drosophila me!anogaster,” Carnegie Inst. Washington Publ. 627, Washington, D. C.Google Scholar
  46. Lovell, J. B., and Kearns, C. W., 1959, Inheritance of DDT-dehydro-chlorinase in the house fly, J. Econ. Entornol., 52:931.Google Scholar
  47. McDonald, I. C., Evenson, P., Nickel, C. A., and Johnson, O. A., 1978, House fly genetics: Isolation of a female determining factor on chromosome 4, Ann. Entomol. Soc. Amer., 71:692.Google Scholar
  48. Milani, R., 1954, The genetics of the house fly. Preliminary note, Atti IXth Congr. Internat. Genet., Bellagio, 1953, Caryologia, Suppl., p. 791.Google Scholar
  49. Milani, R., 1956, Mendelian inheritance of knock-down resistance to DDT and correlation between knock-down and mortality in Musca domestica L., Selected Sei. Papers Istit. Super. Sanith, I, Part 1, p. 176.Google Scholar
  50. Milani, R., 1961, Results of genetic research on Musca domestica L., Atti Assoc. Genet. Ital., 6:427.Google Scholar
  51. Milani, R., 1967, The genetics of Musca domestica and of other muscoid flies, in: “Genetics of Insect Vectors of Disease,” Wright, J. W., and Pal, R., ed., pp. 315–369, Elsevier, Amsterdam.Google Scholar
  52. Milani, R., 1975, The housefly, Musca domestica, in: “Handbook of Genetics. Vol. 3,” King, R. C., ed., pp. 377–399, Plenum Press, New York.Google Scholar
  53. Milani, R., and Franco, M. G., 1959, Comportamento ereditario della resistenza al DDT in incroci tra il ceppo Orlando-R e ceppo kdrekdr + di Musca domestica L., Symp. Genet. Biol. Ital., 6:269.Google Scholar
  54. Motoyama, N., and Dauterman, W. C., 1978, Molecular weight, subunits, and multiple forms of glutathione S-transferase from the house fly, Insect Biochem., 8:337.CrossRefGoogle Scholar
  55. Motoyama, N., and Plapp, F. W., Jr., 1977, Genetic studies on glutathione-dependent reactions in resistant strains of the house fly, Musca domestica L., Pestic. Biochem. Physiol., 7:443.CrossRefGoogle Scholar
  56. Narang, S., Bhalla, S. C., and Narang, N., 1977, Isozymes of Culex p. fatigans: I. An esterase locus in linkage group III and its variability in natural populations, J. Hered., 68:95.PubMedGoogle Scholar
  57. Nickel, C. A., and Wagoner, D. E., 1970, Some new mutants of house flies and their linkage groups and map positions, J. Econ. Entomol., 63:1385.PubMedGoogle Scholar
  58. O’Brien, R. D., Tripathi, R. K., and Howell, L. L., 1978, Substrate preference of wild and mutant house fly acetylcholinesterase and a comparison with the bovine erythrocyte enzyme, Biochim. Biophys. Acta, 526:129.PubMedGoogle Scholar
  59. Ogita, Z., 1958, The genetical relation between resistance to insecticides in general and that to phenylthiourea (PTU) and phenylurea (PU) in Drosophila melanogaster, Botyu-Kagaku, 23:188.Google Scholar
  60. Ogita, Z., and Hiroyoshi, T., 1965, Further genetico-biochemical study on amylase-isoenzymes in the house fly, Japan. J. Genet., 40:411.Google Scholar
  61. Ogita, Z., and Kasai, T., 1965a, Genetic control of multiple molecular forms of the acid phosphomonoesterases in the housefly, Musca domestica, Japan. J. Genet., 40:185.CrossRefGoogle Scholar
  62. Ogita, Z., and Kasai, T., 1965b, Genetic control of multiple esterases in Musca domestica, Japan. J. Genet., 40:1.CrossRefGoogle Scholar
  63. Ogita, Z., and Kasai, T., 1965c, A genetic analysis of synergistic action of sulfonamide derivatives with DDT against houseflies (Musca domestica), Botyu-Kagaku, 30:119.Google Scholar
  64. Oppenoorth, F. J., 1959, Genetics of resistance to organophosphorus compounds and low ali-esterase activity in the housefly, Entomol. Exp. Appl., 2:304.CrossRefGoogle Scholar
  65. Oppenoorth, F. J., 1979, Localization of the acetylcholinesterase gene in the housefly, Musca domestica, Entomol. Exp. Appl., 25:115.CrossRefGoogle Scholar
  66. Oppenoorth, F. J., and Houx, N. W. H., 1968, DDT-resistance in the housefly caused by microsomal degradation, Entomol. Exp. Appl., 11:81.CrossRefGoogle Scholar
  67. Oppenoorth, F. J., and Nasrat, G. E., 1966, Genetics of dieldrin and 03b3-BHC resistance in the housefly, Entomol. Exp. Appl., 9:223.CrossRefGoogle Scholar
  68. Oppenoorth, F. J., and van Asperen, K., 1960, Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance, Science, 132:298.PubMedCrossRefGoogle Scholar
  69. Oppenoorth, F. J., and Welling, W., 1976, Biochemistry and physiology of resistance, in: “Insecticide Biochemistry and Physiology,” Wilkinson, C. F., ed., pp. 507–551, Plenum Press, New York.Google Scholar
  70. Oppenoorth, F. J., Rupes, V., El Bashir, S., Houx, N. W. H., and Voerman, S., 1972, Glutathione-dependent degradation of para-thion and its significance for resistance in the housefly, Pestic. Biochem. Physiol., 2:262.CrossRefGoogle Scholar
  71. Oppenoorth, F. J., Smissaert, H. R., Welling, W., van der Pas, L. T. J., and Hitman, K. T., 1977, Insensitive acetylcholinesterase, high glutathione-S-transferase, and hydrolytic activity as resistance factors in a tetrachlorvinphos-resistant strain of house fly, Pestic. Biochem. Physiol., 7:34.CrossRefGoogle Scholar
  72. Perje, A. M., 1948, Studies on the spermatogenesis in Musca domes-tica, Eereditas, 34:209.Google Scholar
  73. Plapp, F. W., Jr., 1970, Inheritance of dominant factors for resistance to carbamate insecticides in the house fly, J. Econ. Entomol., 63:138.PubMedGoogle Scholar
  74. Plapp, F. W., Jr., 1976, Biochemical genetics of insecticide resistance, Ann. Rev. Entomol., 21:179.CrossRefGoogle Scholar
  75. Plapp, F. W., Jr., and Casida, J. E., 1969, Genetic control of house fly NADPH-dependent oxidases: Relation to insecticide chemical metabolism and resistance, J. Econ. Entomol., 62:1174.PubMedGoogle Scholar
  76. Plapp, F. W., Jr., and Tripathi, R. K., 1978, Biochemical genetics of altered acetylcholinesterase resistance to insecticides in the house fly, Biochem. Genet., 16:1.PubMedCrossRefGoogle Scholar
  77. Plapp, F. W., Jr., and Vinson, S. B., 1973, Juvenile hormone analogs: Toxicity and cross-resistance in the housefly, Pestic. Biochem. Physiol., 3:131.CrossRefGoogle Scholar
  78. Plapp, F. W., Jr., Tate, L. G., and Hodgson, E., 1976, Biochemical genetics of oxidative resistance to diazinon in the house fly, Pestic. Biochem. Physiol., 6:175.CrossRefGoogle Scholar
  79. Rupes, V., and Pinterová, J., 1975, Genetic analysis of resistance to DDT, methoxychlor and fenitrothion in two strains of housefly (Musca domestica),, Entomol. Exp. Appl., 18:480.CrossRefGoogle Scholar
  80. Sakai, R. K., Iqbal, M. P., and Baker, R. H., 1973, Genetics of alkaline phosphatase in a mosquito Culex tritaeniorhynchus, Ann. Entomol. Soc. Amer., 66:913.Google Scholar
  81. Sawicki, R. M., 1973a, Resistance to insecticides in the SKA strain of houseflies, Report Rothamsted Exp. Station for 1972, pp. 168–181.Google Scholar
  82. Sawicki, R. M., 1973b, Resynthesis of multiple resistance to organo-phosphorus insecticides from strains with factors of resistance isolated from the SKA strain of house flies, Pestic. Sci., 4:171.CrossRefGoogle Scholar
  83. Sawicki, R. M., 1973c, Recent advances in the study of the genetics of resistance in the housefly, Musca domestica, Pestic. Sci., 4:501.CrossRefGoogle Scholar
  84. Sawicki, R. M., 1974, Genetics of resistance of a dimethoate-selected strain of houseflies (Musca domestica L.) to several insecticides and methylenedioxyphenyl synergists, J. Agr. Food Chem., 22:344.CrossRefGoogle Scholar
  85. Sawicki, R. M., and Farnham, A. W., 1967, The use of visible mutant markers in the study of resistance of house flies to insecticides, Proc. 4th British Insectic. Fungic. Confer., 1967:355.Google Scholar
  86. Sawicki, R. M., and Farnham, A. W., 1968, Genetics of resistance to insecticides of the SKA strain of Musca domestica, III. Location and isolation of the factors of resistance to dieldrin, Entomol. Exp. Appl., 11:133.CrossRefGoogle Scholar
  87. Sawicki, R. M., and Lord, K. A., 1970, Some properties of a mechanism delaying penetration of insecticides into houseflies, Pestic. Sci., 1:213.CrossRefGoogle Scholar
  88. Schafer, J. A., and Terriere, L. C., 1970, Enzymatic and physical factor in house fly resistance to naphthalene, J. Econ. Entomol., 63:787.PubMedGoogle Scholar
  89. Shono, T., 1974a, Studies on the mechanism of resistance to diazinon-resistant Hokota strain of houseflies. II. In vitro degradation of diazoxon, Botyu-Kagaku, 39:54.Google Scholar
  90. Shono, T., 1974b, Studies on the mechanism of resistance in diazinon-resistant Hokota strain of houseflies. III. Diazinon degradation by glutathione-S-transferase, Botyu-Kagaku, 39:75.Google Scholar
  91. Shono, T., 1974c, Studies on the mechanism of resistance in diazinon-resistant Hokota strain of houseflies. IV. Diazinon metabolism by mixed-function oxidase, Botyu-Kagaku, 39:80.Google Scholar
  92. Stanton, R. H., Plapp, F. W., Jr., White, R. A., and Agosin, M., 1978, Induction of multiple cytochrome P-450 species in housefly microsomes: SDS-gel electrophoresis studies, Comp. Biochem. Physiol., B. Comp. Biochem., 61:291.CrossRefGoogle Scholar
  93. Steiner, W. W. M., and Joslyn, D. J., 1979, Electrophoretic techniques for the genetic study of mosquitoes, Mosq. News, 39:35.Google Scholar
  94. Stone, B. F., 1968, A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals, Bull. WHO, 38:325.PubMedGoogle Scholar
  95. Sullivan, R. L., 1961, Linkage and sex limitation of several loci in the housefly, J. Reved., 52:282.Google Scholar
  96. Tabachnick, W. J., and Powell, J. R., 1978, Genetic structure of the East African domestic populations of Aedes aegypti, Nature, 272:535.CrossRefGoogle Scholar
  97. Tate, L. G., Plapp, F. W., Jr., and Hodgson, E., 1974, Genetics of cytochrome P-450 in two insecticide-resistant strains of the housefly, Musca domestica L., Biochem. Genet., 11:49.PubMedCrossRefGoogle Scholar
  98. Taylor, C. E., and Georghiou, G. P., 1979, Suppression of insecticide resistance by alteration of gene dominance and migration, J. Econ. Entornol., 72:105.Google Scholar
  99. Tripathi, R. K., Telford, J. N., and O’Brien, R. D., 1978, Molecular and structural characteristics of house fly brain acetylcholinesterase, Biochem. Biophys. Acta, 525:103.PubMedGoogle Scholar
  100. Tsukamoto, M., 1959, Metabolic fate of DDT in Dvosophila melanogas-tev. I. Identification of a non-DDE metabolite, Botyu-Kagaku, 24:141.Google Scholar
  101. Tsukamoto, M., 1963, The log dosage-probit mortality curve in genetic research of insect resistance to insecticides, Botyu-Kagaku, 28:91.Google Scholar
  102. Tsukamoto, M., 1964, Method for the linkage-group determination of insecticide-resistance factors in the housefly, Botyu-Kagaku, 29:51.Google Scholar
  103. Tsukamoto, M., 1965, The estimation of recombination values in back-cross data when penetrance is incomplete, with a special reference to its application to genetic analysis of insecticide-resistance, Japan. J. Genet., 3:159.CrossRefGoogle Scholar
  104. Tsukamoto, M., 1969, Biochemical genetics of insecticide resistance in the housefly, Residue Rev., 25:289.PubMedGoogle Scholar
  105. Tsukamoto, M., and Ogaki, M., 1953, Inheritance of resistance to DDT in Drosophila melanogastev, Botyu-Kagaku, 18:39.Google Scholar
  106. Tsukamoto, M., and Suzuki, R., 1963, Communication to World Health Organization, WHO Inf. Civ. Insectic. Resist., 46:20.Google Scholar
  107. Tsukamoto, M., and Suzuki, R., 1964, Genetic analyses of DDT-resis-tance in two strains of the housefly, Musca domestica L., Botyu-Kagaku 29:76.Google Scholar
  108. Tsukamoto, M., and Suzuki, R., 1966, Genetic analyses of diazinon-resistance in the house fly, Botyu-Kagaku, 31:1.Google Scholar
  109. Tsukamoto, M., Baba, Y., and Hiraga, S., 1961, Mutation and linkage groups in Japanese strains of the housefly, Japan. J. Genet., 36:168.CrossRefGoogle Scholar
  110. Tsukamoto, M., Narahashi, T., and Yamasaki, T., 1965, Genetic control of low nerve sensitivity to DDT in insecticide-resistant house-flies, Botyu-Kagaku 30:128.Google Scholar
  111. Tsukamoto, M., Shrivastava, S. P., and Casida, J. E., 1968, Biochemical genetics of house fly resistance to carbamate insecticide chemicals, J. Econ. Entomol., 61:51.Google Scholar
  112. van Asperen, K., 1964, Biochemistry and genetics of esterases in houseflies (Musca domestica) with special reference to the development of resistance to organophosphorus compounds. Entomol. Exp. Appl., 7:205.CrossRefGoogle Scholar
  113. Velthuis, H. H., and van Asperen, K., 1963, Occurrence and inheritance of esterases in Musca domestica, Entomol. Exp. Appl., 6:79.CrossRefGoogle Scholar
  114. Wagoner, D. E., 1967, Linkage group-karyotype correlation in the house fly determined by cytological analysis of X-ray induced translocations, Genetics, 57:729.PubMedGoogle Scholar
  115. Wagoner, D. E., 1969, Linkage group-karyotype correlation in the house fly, Musca domestica L., confirmed by cytological analysi of X-ray induced Y-autosomal translocations, Genetics, 62:115.PubMedGoogle Scholar
  116. Wright, J. W., and Pal, R., ed., 1967, “Genetics of Insect Vectors of Disease,” Elsevier, Amsterdam.Google Scholar
  117. Yamamoto, I., and Casida, J. E., 1966, C-Dimethyl pyrethrin II analogs from oxidation of pyrethrin I., allethrin, dimethrin, and phthalthrin by house fly enzyme systems, J. Econ. Entomol., 59:1542.Google Scholar
  118. Yu, S. J., and Terriere, L. C., 1978, Metabolism of juvenile hormone I by microsomal oxidase, esterase, and epoxide hydrase of Musca domestica and some comparisons with Phovmia vegina and Sarcophaga bullata, Pestic. Biochem. Physiol., 9:237.CrossRefGoogle Scholar
  119. Yust, H. R., Nelson, H. D., and Busbey, R. L., 1943, Comparative susceptibility of two strains of California red scale to HCN, with special reference to the inheritance of resistance, J. Econ. Entomol., 36:744.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Masuhisa Tsukamoto
    • 1
  1. 1.Department of Medical Zoology, School of MedicineUniversity of Occupational and Environmental HealthIseigaoka, Yahata-nishiku, Kitakyushu 807Japan

Personalised recommendations