Natural Enemy Resistance to Pesticides: Documentation, Characterization, Theory and Application

  • B. A. Croft
  • K. Strickler


After arthropod pests first developed resistance to pesticides (e.g., DDT), entomologists questioned whether or not the natural enemies of arthropods would do the same (e.g., Pielou and Glasser, 1952; Wilkes et al., 1951; Spiller, 1958). In the early 1950s Macvooentrus anyclivovus, a braconid parasite of the Oriental fruit moth (Grapholitha molesta) was selected with DDT for 70 generations to see if a resistance potential was present and if it could be exploited by design. After six years and three million treated insects a disappointing maximum resistance of 12-fold resulted. When selection was discontinued, resistance regressed back to the original level within a few generations (Pielou and Glasser, 1952; Wilkes et al., 1951; Robertson, 1957). The failure to produce a resistant M. anaylivorus was typical of other attempts at selection of resistant beneficial arthropods in laboratory experiments during the period 1955–70 (e.g., Adams and Cross, 1967; Kot et al., 1971). There were no reports of significant resistance developing in field populations of natural enemies during this time period.


Natural Enemy Methyl Parathion Apple Orchard Phytoseiid Mite Cross Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abdelrahman, I., 1973, Toxicity of malathion to the natural enemies of California red scale, Aonidiella auvantii (Mask.) (Hemiptera: Diapidae), Aus t. J. Agric. Res., 24:119.CrossRefGoogle Scholar
  2. Adams, C. H., and Cross, W. H., 1967, Insecticide resistance in Bracon mellitor, a parasite of the boll weevil, J. Econ. Entomol., 60:1016.Google Scholar
  3. Adams, R. G., and Prokopy, R. J., 1977, Apple aphid control through natural enemies. Mass, Fruit Note, 42:6.Google Scholar
  4. Ahlstrom, D. R., and Rock, G. C., 1973, Comparative studies on Neosieulus fallaois and Metaseiulus oocidentalis for azinphos-methyl toxicity and effects of prey and pollen on growth, Ann. Entomol. Soc. Am., 66:1109.Google Scholar
  5. Anonymous, 1977, Ann. Rept. of Dept. Agric. Res. Rept. Royal Trop, Inst.. The Netherlands, 72 pp.Google Scholar
  6. Atallah, Y. H., and Newsom, L. D., 1966, The effect of DDT, toxaphene and endrin on the reproductive and survival potentials of Coleomegilla maculata, J. Econ. Entomol., 59:1181.Google Scholar
  7. Brattsten, L. B., and Metcalf, R. L., 1970, The synergistic ratio of carbaryl with piperonyl butoxide as an indicator of the distribution of multifunction oxidases in the Insecta, J. Econ. EntomoI., 36:101.Google Scholar
  8. Brattsten L. B., Wilkinson, C. F., and Eisner, T., 1977, Herbivore-Plant interaction: Mixed-function oxidases and secondary plant substances, Science, 196:1349.PubMedCrossRefGoogle Scholar
  9. Brown, A. W.. 1977, Epilogue: Resistance as a factor in pesticide management, p. 81624, Prox. XV Intern. Cong. Entomol. Public Entomol. Soc. Amer., College Pk., Md, 824 pp.Google Scholar
  10. Brown, A. W. A., and Pal, R., 1973., Insecticide resistance in Arthropods, 2nd Ed. WHO Monograph Ser., 38, 483 pp.Google Scholar
  11. Chambers, H. W., 1973, Comparative tolerance of selected beneficial insects to methyl parathion, Communication to Ann. Meet. Entomol, Soc. Amer., Nov, 28. p. 68.Google Scholar
  12. Collyer, E., and Van Geldermalsen, M., 1975, Integrated control of apple pests in New Zealand, 1, Outline of experiments and general results, N. A. J. Zool., 2:101.CrossRefGoogle Scholar
  13. Cumins, H. N., 1977a, The development of insecticide resistance in the presence of migration, J. Theoret. Biol., 64:177.CrossRefGoogle Scholar
  14. Comins, H. N., 1977b. The management of pesticide resistance, J. Theovet. Biol., 65:399.CrossRefGoogle Scholar
  15. Cranham, J. E., and Solomon, M. G., 1978, Establishment of predaceous mites in orchards, East Mailing Res. Rept. for 1977, 110.Google Scholar
  16. Croft, B. A., 1972, Resistant natural enemies in pest management systems. SPAN, 15:19.Google Scholar
  17. Croft, B. A., 1975, Integrated control of apple mites, Ext, Bull. E-823 Mich. St. U., 12 pp.Google Scholar
  18. Croft, B. A., 1977, Resistance in arthropod predators and parasites, p. 377–393, in “Pesticide Management and Insecticide Resistance,” D. L. Watson and A. W. A. Brown, eds., Acad, Press, New York, 638 pp.Google Scholar
  19. Crofts B. A., 1979, Management of apple arthropod pests and natural enemies relative to developed insecticide resistance, Environ.Entomol. 8;583.Google Scholar
  20. Croft, B. A., 1980, Introduction Cpt. 1, in: “Integrated Control of Deciduous Tree Fruit Pests, B, A. Croft and S. C. Hoyt, eds., Wiley Intersci., New York (in press).Google Scholar
  21. Croft, B. A., and Barnes, M. M., 1971, Comparative studies on four strains of Typhlodromus occidentalis, III. Evaluations of releases of insecticide-resistant strains into an apple orchard ecosystem, J. Econ. Entomol., 64:845.Google Scholar
  22. Croft, B. A., and Barnes, M. M., 1972, Comparative studies on four strains of Typhlodromus occidentalis, VI, Persistance of insec ticide resistant strains in an apple orchard ecosystem, J. Econ, Entomol., 65:211.Google Scholar
  23. Croft, B. A., and Brown, A. W. A., 1975, Responses of arthropod natural enemies to insecticides, Ann, Rev. Entomol., 20:285.CrossRefGoogle Scholar
  24. Croft, B. A., and Hoying, S. A., 1975, Carbaryl resistance in native and released populations of Amblyseius fallacis, J. Environ, Entomol., 4:895.Google Scholar
  25. Croft, B. A., and Hoyt, S. C., 1978, Considerations in the use of pyrethroid insecticides for deciduous tree fruit pest control in the USA, Environ, Entomol., 7:627.Google Scholar
  26. Croft, B. A., and Jeppson, L. R., 1970, Comparative studies on four strains of Typhlodromus occidentalism II. Laboratory toxicity of ten compounds common to apple pest control, J. Econ, Entomol., 63:1528.Google Scholar
  27. Croft, B. A., and McGroarty, D. L., 1977, The role of Amblyseius fallacis (Acarina:Phytoseiidae) in Michigan apple orchards, Mich, Expt. Sta, Res. Rept., 333, 22 pp.Google Scholar
  28. Croft, B. A. and Meyer, R. H. 1973, Carbamate and organophosphorus resistance patterns in populations of Amblyseius fallacis, Environ, Entomol., 2:691.Google Scholar
  29. Croft, B. A., and Morse, J. G., 1979, Recent advances on pesticide resistance in natural enemies, Entomophaga, 24:3.CrossRefGoogle Scholar
  30. Croft, B. A., and Nelson, E. E., 1972, Toxicity of apple orchard pesticides to Michigan populations of Amblyseius fallacis, Environ. EntomoI., 1:576.Google Scholar
  31. Croft, B. A., Briozzoj J., and Carbonell, J. B., 1976a, Resistance to organophosphorus insecticides in the predaceous mite, Amblyseius chilenensis, J. Econ. Entomol., 69:563.Google Scholar
  32. Croft, B. A., Brown3 A. W. A., and Hoying, S. A., 1976b, Organophosphorus resistance and its inheritance in the predaceous mite Amblyseius fallacis, J. Econ, Entomol., 69:64.Google Scholar
  33. F.A.O., 1977, Pest resistance to pesticides and crop loss assessment 1 Rept. of 1st F.A.O. Panel of Experts. F.A.O. Plant Prod, and Protect, Paper 6, 42 pp.Google Scholar
  34. F.A.O., 1979, Pest resistance to pesticides, Rept. 2nd Panel of Experts Rome/Sept. 5–10, 1978, F.A.O, Plant Prot. Paper (in press).Google Scholar
  35. Field, R. P., 1974 Occurrence of an Australian strain of Typhlodromus (Acarina:Phytoseiidae) tolerant to parathion, J. Aust.Entomol. Soc., 13:255.CrossRefGoogle Scholar
  36. Field, R. P., 1976 Integrated pest control of Victorian peach orchards: The role of Typhlodromus occidentalis Nesbitt (Acarina:Phytoseiidae), Aust. J. Zool., 24:565.CrossRefGoogle Scholar
  37. Gambaro, P. I., 1975, Organophosphorus resistance in a peach orchard population of predaceous mites, Estrat. Inform. Fitopath., 25:21.Google Scholar
  38. Georghiou, G. P., 1972, The evolution of resistance to pesticides, Ann, Rev, Ecol, Syst., 3:133.CrossRefGoogle Scholar
  39. Georghiou, G. P., and Taylor, C. E., 1976, Pesticide resistance as an evolutionary phenomenon, Proc, 15th Int. Chg. Entomol, pp. 759–785.Google Scholar
  40. Georghiou, G. P., and Taylor, C. E., 1977a, Genetic and biological influences in the evolution of insecticide resistance, J. Econ. Entomol., 70:319.PubMedGoogle Scholar
  41. Georghiou, G. P., and Taylor, C. E., 1977b, Operational influences in the evolution of insecticide resistance, J. Econ. Entomol., 70:653.Google Scholar
  42. Gordon, H. T., 1961, Nutritional factors in insect resistance to chemicals, Ann. Rev, Entomol., 6:27.CrossRefGoogle Scholar
  43. Gruys, P., 1976, Development and implementation of an integrated control programme for apple orchards in the Netherlands, Proc, 8th Brit. Insecti. and Fungi. Conf., (1975) p. 823.Google Scholar
  44. Helle, W., and van de Vrie, M., 1974, Problems with spider mites, Outlook on Agric., 8:119.Google Scholar
  45. Herne, D. H. C., and Brown, A. W. A., 1969, Inheritance and biochemistry of OP resistance in a New York strain of the two-spotted spider mite, J. Econ, Entomol., 62:205.Google Scholar
  46. Hough, W. S., 1963, Resistance to insecticides by codling moth and red-banded leaf roller, Virginia Ag. Expt. Sta, Tech, Bull., 166, 32 pp.Google Scholar
  47. Hoy, M. A., and Knop, N. F., 1979, Studies on pesticide resistance in the phytoseiid Metaseiulus occidentales in California, p. 8994, in: “Recent Advances in Acarology, Vol. 1,” J. G. Rodriguez, ed., Acad. Press, New York, 631 pp.Google Scholar
  48. Hoyt, S. C., 1969, Integrated chemical control of insects and biological control of mites on apples in Washington, J. Econ. Entomol., 62:74.Google Scholar
  49. Hoyt, S. C., 1972, Resistance to azinphosmethyl of Typhlodromus pyri from New Zealand, N. Z. J. Sci., 15:16.Google Scholar
  50. Huffaker, C. B., 1971, The ecology of pesticide interference with insect populations, p. 92107, Agricultural Chemicals Harmony or Discord for Food, People and the Environment, J. E. Swift, ed., Univ. Calif. Div. Agric. Sci. Publ., 151 pp.Google Scholar
  51. Huffaker, C. B., and Kennett, C. E., 1953, Differential tolerance to parathion in two Typhlodromus predatory on cyclamen mite, J. Econ. Entomol., 46:707.Google Scholar
  52. Keiding, J., 1967, Persistence of resistant populations after the relaxation of the selection pressure, World Rev. Rest Control, 6:115.Google Scholar
  53. Keiding, J., 1977, Resistance in the housefly in Denmark and elsewhere, p. 261302, in: “Pesticide Management and Insecticide Resistance,” D. L. Watson and A. W. A. Brown, eds., Acad. Press, New York, 638 pp.Google Scholar
  54. Kennett, C. E., 1970, Resistance to parathion in the phytoseiid mite Amblyseius hibisci, J. Econ. Entomol., 63:1999.Google Scholar
  55. Kot, J. T., Plewka, T., and Krudierek, T., 1971, Relationship in parallel development of host and parasite resistance to a common toxicant — Funal tecnical report PL-480, E21-Ent-19, F6-Po-203, Inst. Ecol. Polish Acad. Sci., Wky Dz. Inf. PAN Zam., 25/71 66 pp.Google Scholar
  56. Kot, J. T., Plewka, T., and Krukierek, T., 1977, Investigation on metasystox and DDT resistance of five populations of Tricogvamma evanesoens Westw. (Hymenoptera:Trichogrammatidae), Polish Ecol. Stud., 1:175.Google Scholar
  57. Krieger, R. I., Feeny, P. P., and Wilkinson, C. F., 1971, Detoxification enzymes in the guts of caterpillars: An evolutionary answer to plant defenses? Science, 172:579.PubMedCrossRefGoogle Scholar
  58. Meyer, R. H., 1975, Release of carbaryl-resistant predatory mites in apple orchards, Environ. Entomol., 4:49.Google Scholar
  59. Morgan, C. V. C., and Madsen, H. F., eds., 1976, Development of chemical, biological and physical methods for control of insects and mites, p. 256301, in: “History of Fruit Growing and Handling in United States of America and Canada,” 18601972, Rogatta Press, Kelowna, B. C., Canada, 651 pp.Google Scholar
  60. Morse, J. G., 1978, Development of resistance to azinphosmethyl, in the predatory mite, Amblyseius fallacis. and its prey, Tetvanychus uvticae, in greenhouse experiments, MS Thesis, Michigan State Univ., East Lansing, MI, 65 pp.Google Scholar
  61. Morse, J. G., and Croft, B. A., 1981, A summary of resistance studies to azinphosmethyl in the predatory mite Amblyseius fallacis and its prey Tetvanychus uvticae, Entomophaga, (in press).Google Scholar
  62. Motoyama, N., Rock, G. C., and Dauterman, W. C., 1970, Organophos-phorus resistance in an apple orchard population of Typhlodvomus (Amblyseius) fallacis, J. Econ. Entomol., 63:1439.Google Scholar
  63. Motoyama, N., Rock, G. C., and Dauterman, W. C., 1971, Studies on the mechanisms of azinphosmethyl resistance in the predaceous mite Neoseiulus (T.) fallacis, Biochem. Physiol., 1:205.Google Scholar
  64. Motoyama, N., Rock, G. C., and Dauterman, W. C., 1977, Toxicity to O-alkyl analogues of azinphosmethyl to resistant and susceptible predaceous mite, Amblyseius fallacis, J. Econ. Entomol., 70:475.Google Scholar
  65. Newsom, L. D., 1974, Predator insecticide relationships, Entomophaga Mem. Sev., 7, 88 pp.Google Scholar
  66. Oatman, E. R., McMurtry, J. A., and Voth, V., 1968, Suppression of the two-spotted spider mite on strawberry with mass releases of Phytoseiulus pevsimilis, J. Econ. Entomol., 61:1517.Google Scholar
  67. Penman, D. R., Ferro, D. N., and Waring, C. H., 1976, Integrated control of apple pests in New Zealand, VII. Azinphosmethyl resistance in strains of Typhlodromus pyri from Nelson, N. Z. J. Expt. Agric, 4:377.Google Scholar
  68. Penman, D. R., Wearing, C. H., Collyer, E., and Thomas, W. P., 1979, The role of insecticide-resistant phytoseiids in integrated mite control in New Zealand, Proc. V Intern, Cong. Acarol., 5 (in press).Google Scholar
  69. Pielou, D. P., and Glasser, R. F., 1952, Selection for DDT resistance in a beneficial insecticide, Science, 115:117.PubMedCrossRefGoogle Scholar
  70. Plapp. F. W. Jr., 1980, Ways and means of avoiding or ameliorating resistance to insecticides, Proc. IV Intern. Cong. Plant Prot. Wash. D.C., 1979 (in press).Google Scholar
  71. Readshaw, J. L., 1975, Biological control of orchard mites in Australia with an insecticide-resistant predator, J. Aust. Inst, Ag. Sci., 41:213.Google Scholar
  72. Robertson, J. G., 1957, Changes in resistance to DDT in Macrocentrus ancylivorus Rohw., Can. J. Zool.m 35:629.CrossRefGoogle Scholar
  73. Rock, G. C., and Yeargan, D. R., 1971, Relative toxicity of pesticides to organophosphorus-resistant orchard populations of Neoseiulus fallacis and its prey, J. Econ. Entomol., 64:350.Google Scholar
  74. Schulten, G. G. M., and van de Klashorst, G., 1977, Genetics of resistance to parathion and derneton-S-methyl in Vhyloseiulus persimilis A. H. (Acari:Phytoseiidae), Proc. IV Cong. Acarol. Aust. (1974).Google Scholar
  75. Schulten, G. G. M., van de Klashort, G., and Russel, V. M., 1976, Resistance of Phytoseiulus persimilis A. H. (Acari:Phytoseiidae) to some insecticides, Zeit. Ang. Ent., 80:337.CrossRefGoogle Scholar
  76. Spiller, D., 1958, Resistance of insects to insecticides, Entomologist, 2:1.Google Scholar
  77. Storozhkov, Yu.V., Chabanovaskii, A. G., Mosshukin, Yu. B., and Metreveli, N. P., 1977, The resistance of Phytoseiulus to pesticides, Zashchita. Rastenii, 10:26.Google Scholar
  78. Strawn, A. J., 1978, Differences in response to four organophosphates in laboratory strains of Aphytis melinus and Comperiella loifasciata from citrus groves with different pesticide histories, M.S. Thesis, Univ. Calif. Riverside, 117 pp.Google Scholar
  79. Swift, F. C., 1970, Prédation of Typhlodromus (A.) fallacis on the European red mite as measured by the insecticidal check method, J. Econ, Entomol., 63:1617.Google Scholar
  80. van de Vrie, M., 1962, The influence of spray chemicals on predatory and phytophagous mites on apple trees in laboratory and field trials in the Netherlands, Entomophaga, 7:243.CrossRefGoogle Scholar
  81. Watve, C. M., and Lienk, S. E., 1975, Response of two phytoseiid mites to pesticides used in New York apple orchards, Environ. Entomol., 4:797.Google Scholar
  82. Watve, C. M., and Lienk, S. E., 1976, Resistance to carbaryl and six organophosphorus insecticides of Amblyseius fallacis and Typhlodromus pyri from New York apple orchards, Environ. Entomol., 5:368.Google Scholar
  83. Wilkes, A., Pielou, D. P., and Glasser, R. F., 1951, Selection for DDT tolerance in a beneficial insect, in: “Conference on Insecticide Resistance and Insect Physiology,” Nat. Acad. Sci. Publ. No. 219, pp. 78–81.Google Scholar
  84. Zilbermints, I. V., 1975, Genetic change in the development and loss of resistance to pesticides, Proc. 8th Intern. Cong. Plant Protec, 2:85.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • B. A. Croft
    • 1
  • K. Strickler
    • 1
  1. 1.Pesticide Research Center, Department of EntomologyMichigan State UniversityEast LansingUSA

Personalised recommendations