Advertisement

Insect Growth Regulators: Resistance and The Future

  • Thomas C. Sparks
  • Bruce D. Hammock

Abstract

In 1967 Carroll Williams summarized several years of campaigning for a revolution in pesticide chemistry with the publication of an article entitled “Third Generation Pesticides.” His lectures on the golden oil of Ceovopia helped to inspire the identification of the first juvenile hormone (JH) structure (Roller et al., 1976) as well as the synthesis of potent and relatively inexpensive JH mimics (Law et al., 1966; Bowers, 1968, 1969). Among the many potential advantages of the third generation pesticides was one predicted in the statement, “Now insect hormones promise to provide insecticides that are not only more specific but also proof against the evolution of resistance” (Williams, 1967). This statement was seriously questioned (Ellis, 1968; Schneiderman, 1971, 1972), and shortly thereafter it was shown to be invalid by the publication of two papers demonstrating that strains resistant (R) to pesticides could be cross-resistant to JHs (Dyte, 1972) and their mimics (Cerf and Georghiou, 1972).

Keywords

Juvenile Hormone Cross Resistance Insect Growth Regulator Boll Weevil Juvenile Hormone Analogue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajami, A. M., 1975, Inhibitors of ester hydrolysis as synergists for biological activity of Cecropia juvenile hormone, J. Insect Physiol., 21:1017.PubMedCrossRefGoogle Scholar
  2. Ajami, A. M., and Riddiford, L. M., 1973, Comparative metabolism of the Cecropia juvenile hormone, J. Insect Physiol., 19:635.CrossRefGoogle Scholar
  3. Amos, T. G., Williams, P., Du Guesclin, P. B., and Schwarz, M., 1974, Compounds related to juvenile hormone: Activity of selected terpenoids on Tribolium castaneum and T. confusion, J. Econ. Entomol., 67:474.Google Scholar
  4. Amos, T. G., Williams, P., and Semple, R. L., 1977, Susceptibility of malathion-resistant strains of Tribolium castaneum and T. confusum to the insect growth regulators methoprene and hydroprene, Ent. Exp. Appl., 22:289.CrossRefGoogle Scholar
  5. Arevad, K., 1974, Laboratory experiments with a juvenile hormone mimic against housefly larvae, Danish Pest Inf. Lab. Ann. Rep., 1973:42.Google Scholar
  6. Arking, R., and Vlach, B., 1976, Direct selection of mutants of Drosophila resistant to juvenile hormone analogues, J. Insect Physiol., 22:1143.PubMedCrossRefGoogle Scholar
  7. Benskin, J., and Vinson, S. B., 1973, Factors affecting juvenile hormone analogue activity in the tobacco budworm, J. Econ. Entomol., 66:15.Google Scholar
  8. Bigley, W. S., and Vinson, S. B., 1979a, Degradation of [14C]methoprene in the imported fire ant, Solenopsis invicta, Pestic. Biochem. Physio I., 10:1.CrossRefGoogle Scholar
  9. Bigley, W. S., and Vinson, S. B., 1979b, Effects of piperonyl hutox-ide and DEF on the metabolism of methoprene by the imported fire ant, Solenopsis invicta Buren, Pestic. Biochem. Physiol., 10:14.CrossRefGoogle Scholar
  10. Bowers, W. S., 1968, Juvenile hormone: Activity of natural and synthetic synergists, Science, 161:895.PubMedCrossRefGoogle Scholar
  11. Bowers, W. S., 1969, Juvenile hormone: Activity of terpenoid ethers, Science, 164:323.PubMedCrossRefGoogle Scholar
  12. Bowers, W. S., 1976a, Discovery of insect antiallatotropins, in: “The Juvenile Hormones,” L. I. Gilbert, ed., pp. 394–408, Plenum Press, New York.Google Scholar
  13. Bowers, W. S., 1976b, Hormone mimics, in: “The Future for Insecticides,” R. L. Metcalf and J. J. McKelvey, eds., pp. 421–444, John Wiley and Sons, New York.Google Scholar
  14. Bowers, W. S., Ohta, T., Cleere, J. S., and Marsella, P. A., 1976, Discovery of insect anti-juvenile hormones in plants, Science, 193:542.PubMedCrossRefGoogle Scholar
  15. Bowers, W. S., 1977a, Fourth generation insecticides, in: “Pesticide Chemistry in the 20th Century,” ACS Symp. Ser. #37, J. R. Plimmer, ed., pp. 271–275, ACS, Washington, D.C.CrossRefGoogle Scholar
  16. Bowers, W. S., 1977b, Anti-juvenile hormones from plants: Chemistry and biological activity, in: “Natural Products and the Protec-tion of Plants,” G. B. Marini-Bettolo, ed., pp. 129–142, Elsevier Scientific Publishing Co., New York.Google Scholar
  17. Brooks, G. T., 1973a, Insect epoxide hydrase inhibition by juvenile hormone analogues and metabolic inhibitors, Nature, 245:382.CrossRefGoogle Scholar
  18. Brooks, G. T., 1973b, The effects of metabolic inhibitors on insect epoxide hydrases, Bioohem. Soo. Trans., 1:1303.Google Scholar
  19. Brooks, G. T., 1974, Inhibitors of cyclodiene epoxide ring hydrating enzymes of the blowfly, Calliphora erythrocephala, Pestio. Sci., 5:177.CrossRefGoogle Scholar
  20. Brooks, G. T., Pratt, G. E., and Jennings, R. C., 1979, The action of precocenes in milkweed bugs, (Onoopeltus fasoiatus) and locusts (Loousta migratorid), Nature, 281:570.CrossRefGoogle Scholar
  21. Brown, A. W. A., 1977, Epilogue: Resistance as a factor in pesticide management, Proa. XV Inter. Cong. Entomol., 1976:816.Google Scholar
  22. Brown, T. M., and Brown, A. W. A., 1974, Experimental induction of resistance to a juvenile hormone mimic, J. Eoon. Entomol., 67:799.Google Scholar
  23. Brown, T. M., and Brown, A. W. A., 1980, Accumulation and distribution of methoprene in resistant Culex pipiens pipiens larvae, Ent. Exp. Appl., in press.Google Scholar
  24. Brown, T. M., and Hooper, G. H. S., 1979, Metabolic detoxication as a mechanism of methoprene resistance in Culex pip-lens pipiens, Pestio. Bioohem. Physiol., 12:79.CrossRefGoogle Scholar
  25. Brown, T. M., DeVries, D. H., and Brown, A. W. A., 1978, Induction of resistance to insect growth regulators, J. Eoon. Entomol., 71:223.Google Scholar
  26. Bull, D. L., and Ivie, G. W., 1980, Activity and fate of diflubenzuron and certain derivatives in the boll weevil, Pestio. Bioohem. Physiol., in press.Google Scholar
  27. Burt, M. E., Kuhr, R. J., and Bowers, W. S., 1978, Metabolism of precocene II in the cabbage looper and European corn borer, Pestio. Bioohem. Physiol., 9:300.CrossRefGoogle Scholar
  28. Carter, S. W., 1975, Laboratory evaluation of three novel insecticides inhibiting cuticle formation against some susceptible and resistant stored products beetles, J. Stored Prod. Res., 11:187.CrossRefGoogle Scholar
  29. Casida, J. E., 1970, Mixed-function oxidase involvement in the biochemistry of insecticide synergists, J. Ag. Food Chem., 18:753.CrossRefGoogle Scholar
  30. Cerf, D. C., and Georghiou, G. P., 1972, Evidence of cross-resistance to a juvenile hormone analogue in some insecticide-resistant houseflies, Nature, 239:401.PubMedCrossRefGoogle Scholar
  31. Cerf, D. C., and Georghiou, G. P., 1974a, Cross resistance of juvenile hormone analogues in insecticide-resistant strains of Musoa domestioa L., Pestio. Sci., 5:759.CrossRefGoogle Scholar
  32. Cerf, D. C., and Georghiou, G. P., 1974b, Cross-resistance to an inhibitor of chitin synthesis, TH 60–40, in insecticide resistant strains of the house fly, J. Ag. Food Chem., 22:1145.CrossRefGoogle Scholar
  33. Chang, S. C., 1978, Conjugation, the major metabolic pathway of 14C diflubenzuron in the house fly, J. Eoon. Entomol., 71:31.Google Scholar
  34. Chang, S. C., and Stokes, J. B., 1979, Conjugation: The major metabolic pathway of 14C-diflubenzuron in the boll weevil, J. Econ. Entomol., 72:15.Google Scholar
  35. Chang, S. C., and Woods, C. W., 1979a, Metabolism of C-penfluron in the boll weevil, J. Eoon. Entomol., 72:781.Google Scholar
  36. Chang, S. C., and Woods, C. W., 1979b, Metabolism of C-penfluron in the house fly, J. Eoon. Entomol., 72:482.Google Scholar
  37. Chasseaud, L. F., 1974, The nature and distribution of enzymes catalyzing conjugation of glutathione with foreign compounds, Drug Metabolism Review, 2:185.CrossRefGoogle Scholar
  38. Chihara, C. J., Petri, W. H., Fristoom, J. W., and King, D. S., 1972, The assay of ecdysones and juvenile hormones on Drosophila imaginai disks in vitro, J. Insect Physiol., 18:1115.PubMedCrossRefGoogle Scholar
  39. Craven, A. C. C., Brooks, G. T., and Walker, C. H., 1976, The inhibition of HEOM epoxide hydrase in mammalian liver microsomes and pupal homogenates, Pestic. Biochem. Physiol., 6:132.CrossRefGoogle Scholar
  40. Croft, B. A., and Brown, A. W. A., 1975, Response of arthropod natural enemies to insecticides, Ann. Rev. Entomol., 20:285.CrossRefGoogle Scholar
  41. Dame, D. A., Lowe, R. E., Wichterman, G. J., Cameron, A. L., Baldwin, K. F., and Miller, T. W., 1976, Laboratory and field assessment of insect growth regulators for mosquito control, Mosq. News, 36:462.Google Scholar
  42. DeBach, P., 1974, “Biological Control of Natural Enemies,” 323 p., Cambridge University Press, New York.Google Scholar
  43. deKort, C. A. D., 1980, Regulation of juvenile hormone titer, in: “Ann. Rev. Entomol.,” T. W. Mittler, ed., in preparation.Google Scholar
  44. Dyte, C. E., 1972, Resistance to synthetic juvenile hormone in a strain of flour beetle, Tribolium castaneum, Nature, 238:48.CrossRefGoogle Scholar
  45. Edwards, J. P., and Rowlands, D. G., 1978, Metabolism of a synthetic juvenile hormone (JHI) in two strains of the grain weevil, Sitophilus granarius, Insect Biochem., 8:23.CrossRefGoogle Scholar
  46. El-Guindy, M., Bishara, S. I., and Madi, S. M., 1975, Sensitivity to insect growth regulators (juvenile hormone analogues) in insecticide-resistant and -susceptible strains of Spodoptera littoralis (Boids.), Z. PflKrankh PflSchutz., 82:469.Google Scholar
  47. Ellis, P., 1968, Can insect hormones and their mimics be used to control pests, Pest Articles and News Summaries, 14:329.Google Scholar
  48. Englemann, F., 1970, The Physiology of Insect Reproduction. International Series of Monographs in Pure and Applied Biology, Zoology Division, 44, G. A. Kerkut, ed., Pergamon Press, New York.Google Scholar
  49. Erley, D., Southhard, S., and Emmerich, H., 1975, Excretion of juvenile hormone and its metabolites in the locust, Locusta migratoria, J. Insect Physiol., 21:61.CrossRefGoogle Scholar
  50. Eto, M., 1974, “Organophosphorus Pesticides: Organic and Biological Chemistry,” CRC Press, Cleveland, Ohio.Google Scholar
  51. Fukuto, T. R., 1976, Carbamate insecticides, in: “The Future for Insecticides,” R. L. Metcalf and J. J. McKelvey, eds., pp. 313–342, John Wiley and Sons, New York.Google Scholar
  52. Georghiou, G. P., 1972, The evolution of resistance to pesticides, Ann. Rev. Eool. Syst., 3:133.CrossRefGoogle Scholar
  53. Georghiou, G. P., 1979, Status of development of alternative chemicals for control of resistant pests, Proa. Papers 47 Annual Conf. of Calif. Mosq. Control Assoc. Jan. 28–31, 1979:24.Google Scholar
  54. Georghiou, G. P., and Taylor, C. E., 1977, Genetic and biological influences in the evolution of insecticide resistance, J. Eeon. Entomol., 70:319.Google Scholar
  55. Georghiou, G. P., Lin, C. S., and Pasternak, M. E., 1974, Assessment of potentiality of Culex tarsalis for development of resistance to carbamate insecticides and insect growth regulators, Proc. Papers 42 Annual Conf. of Calif. Mosq. Control Assoc, Feb. 24–27, 1974:117.Google Scholar
  56. Georghiou, G. P., Ariaratnam, V., Pasternak, M. E., and Lin, C. S., 1975, Organophosphorus multiresistance in Culex pipiens quinque-fasoiatus in California, J. Eeon. Entomol., 68:461.Google Scholar
  57. Georghiou, G. P., Lee, S., and DeVries, D. H., 1978, Development of resistance to the juvenoid methoprene in the house fly, J. Eeon. Entomol., 71:544.Google Scholar
  58. Gerolt, P., 1976, The mode of action of insecticides: Accelerated water loss and reduced respiration in insecticide-treated Musca Domestica L., Pestie. Sci., 7(6):604.CrossRefGoogle Scholar
  59. Gill, S. S., Hammock, B. D., Yamamoto, I., and Casida, J. E., 1972, Preliminary chromatographic studies on the metabolites and photodecomposition products of the juvenoid 1-(4’-ethylphenoxy)-6,7-epoxy-3,7-dimethyl octene, in: “Insect Juvenile Hormones: Chemistry and Action,” J. J. Menn and M. Beroza, eds., pp. 177–189, Academic Press, New York.Google Scholar
  60. Granett, J., and Leeling, N. C., 1972, A hyperglycemic agent in the serum of DDT-prostrate American cockroaches, Periplaneta ameri-eana, Ann. Entomol. Soc. Amer., 65(2):299.Google Scholar
  61. Grosscurt, A. C., 1978, Diflubenzuron: Some aspects of its ovicidal and larval mode of action and an evaluation of its practical possibilities, Pestie. Sci., 9:373.CrossRefGoogle Scholar
  62. Hammock, B. D., 1975, NADPH dependent epoxidation of methyl farnesoate to juvenile hormone in the cockroach, Blaberus giganteus L., Life Sci., 17:323.PubMedCrossRefGoogle Scholar
  63. Hammock, B. D., and Mumby, S. M., 1978, Inhibition of the epoxidation of methyl farnesoate to juvenile hormone by corpora allata homogenates, Pestie. Bioehem. Physiol., 9:39.CrossRefGoogle Scholar
  64. Hammock, B. D., and Quistad, G. B., 1976, The degradative metabolism of juvenoids by insects, in: “The Juvenile Hormones,” L. I. Gilbert, ed., pp. 374–393, Plenum Press, New York.Google Scholar
  65. Hammock, B. D., and Quistad, G. B., 1980, Juvenile hormone analogs: Mode of action and metabolism, in: “Progress in Pesticide Biochemistry, Vol. 1,” D. H. Hutson and T. R. Roberts, eds., John Wiley and Sons, Chichester, England, in preparation.Google Scholar
  66. Hammock, B. D., Gill, S. S., and Casida, J. E., 1974a, Insect metabolism of a phenyl epoxygeranyl ether juvenoid and related Compounds, Pestic. Biochem. Physiol., 4:393.CrossRefGoogle Scholar
  67. Hammock, B. D., Gill, S. S., and Casida, J. E., 1974b, Synthesis and morphogenetic activity of derivatives and analogs of aryl geranyl ether juvenoids, J. Ag. Food Chem., 22:37.CrossRefGoogle Scholar
  68. Hammock, B., Nowock, J., Goodman, W., Stamoudis, V., and Gilbert, L. I., 1975a, The influence of hemolymph-binding protein on juvenile hormone stability and distribution in Manduca sexta fat body and imaginai disks in vitro, Molec. Cell Endocrinol., 3:167.CrossRefGoogle Scholar
  69. Hammock, B., Gill, S. S., Hammock, L., and Casida, J. E., 1975b, Metabolic O-dealkylation of 1-(4’-ethylphenoxy)-3,7-dimethyl-7-methoxy or ethoxy-trans-2-octene, potent juvenoids, Pestic. Biochem. Physiol., 5:12.CrossRefGoogle Scholar
  70. Hammock, B. D., Mumby, S. M., and Lee, P. W., 1977a, Mechanisms of resistance to the juvenoid methoprene in the house fly Musca domestical., Pestic. Biochem. Physiol., 7:261.CrossRefGoogle Scholar
  71. Hammock, B. D., Sparks, T. C., and Mumby, S. M., 1977b, Selective inhibition of JH esterases from cockroach hemolymph, Pestic. Biochem. Physiol., 7:517.CrossRefGoogle Scholar
  72. Hammock, B. D., Kuwano, E., Ketterman, A., Scheffrahn, R. H., Thompson, S. N., and Sallume, D., 1978, Acute toxicity and developmental effects of analogs of ethyl α-(4-chlorophenoxy)-a-methyl-propionate on two insects, Oncopeltus fasciatus and Tenebrio molitor, J. Ag. Food Chem., 26:166.CrossRefGoogle Scholar
  73. Hammock, B. D., Lovell, V., Sparks, T. C., McLaughlin, J. K. D., 1980, Trifluoromethyl ketones: Potent transition state mimics of juvenile hormone esterases, in preparation.Google Scholar
  74. Henrick, C. A., Willy, W. E., McKean, D. R., Baggiolini, E., and Siddall, J. D., 1975, Approaches to the synthesis of insect juvenile hormone analog ethyl 3,7,ll-trimethyl-2,4-dodecadieno-ate and its photochemistry, J. Org. Chem., 49:8.CrossRefGoogle Scholar
  75. Henrick, C. A., Willy, W. E., and Staal, G. B., 1976, Insect juvenile hormone activity of alkyl (2E, 42E)-3, 7, 11-trimethyl-2,4-dodeca-dienoates. Variations in the ester function and in the carbon chain, J. Ag. Food Chem., 24:207.CrossRefGoogle Scholar
  76. Hollingworth, R. M., 1976, The biochemical and physiological basis of selective toxicity, in: “Insecticide Biochemistry and Physiology,” C. F. Wilkinson, ed., pp. 431–506, Plenum Press, New York.Google Scholar
  77. Hooper, G. H. S., 1976, Esterase mediated hydrolysis of naphthyl esters, malathion, methoprene and Cecropia juvenile hormone in Culex pipiens pipiens, Insect Biochem., 6:255.CrossRefGoogle Scholar
  78. Hoppe, T., 1976, Microplot trial with an epoxyphenylether (insect growth regulator) against several pests of stored wheat grain, J. Stored Prod. Res., 12:205.CrossRefGoogle Scholar
  79. Hrdy, I., 1974, Effects of juvenoids on insecticide susceptible and resistant aphids (Myzus persicae, Aphis fabae and Therioaphasis maculata; Homoptera, Aphidae), Acta ent. bohemoslovaca., 71:367.Google Scholar
  80. Hsieh, M.-Y. G., Steelman, C. D., and Schilling, P. E., 1974, Selection of Culex pipiens quinquefasoiatus Say for resistance to growth inhibitor, Mosq. News, 34:416.Google Scholar
  81. Hwang-Hsu, K., Reddy, G., Kumaran, A. K., Bollenbacher, W. E., and Gilbert, L. I., 1919, Correlations between juvenile hormone esterase activity, ecdysone titer and cellular reprogramming in Galleria mellonella 3 J. Insect Physiol., 25:105.CrossRefGoogle Scholar
  82. Ivie, G. W., and Wright, J. E., 1978, Fate of diflubenzuron in the stable fly and house fly, J. Ag. Food Chem., 26:90.CrossRefGoogle Scholar
  83. Jacobson, M., Beroza, M., Bull, D. L., Bullock, H. R., Chamberlain, W. R., McGovern, T. P., Redfern, R. E., Sarmiento, R., Schwarz, M., Sonnet, R. E., Wakabayashi, N., Waters, R. M., and Wright, J. E., 1972, Juvenile hormone activity of a variety of structural types against several insect species, in: “Insect Juvenile Hormones,” J. J. Menn and M. B. Beroza, eds., pp. 249–302, Academic Press, New York.Google Scholar
  84. Jakob, W. L., 1973, Insect development inhibitors: Tests with house fly larvae, J. Econ. Entomol., 66:819.PubMedGoogle Scholar
  85. Jennings, R. C., and Ottridge, A. P., 1979, The synthesis of preco-cene I epoxide (2,2-dimethyl-3,4-epoxy-7-methoxy-2H-l-benzo-pyran), J. Chem. Soc. Chem. Commun., 920.Google Scholar
  86. Kadri, A. B. H., 1975, Cross-resistance to an insect juvenile hormone analogue in a species of the Anopheles gambiae complex resistant to insecticides, J. Med. Entomol., 12:10.PubMedGoogle Scholar
  87. Kamimura, H., Hammock, B. D., Yamamoto, I., and Casida, J. E., 1972, A potent juvenile hormone mimic, 1-(4’-ethylphenoxy)-6,7-epoxy-3,7-dimethyl-2-octene, labeled with tritium in either the ethyl-phenyl or the geranyl-derived moiety, J. Ag. Food Chem., 20:439.CrossRefGoogle Scholar
  88. Keiding, J., 1977, Resistance in the housefly in Denmark and elsewhere, in: “Pesticide Management and Insecticide Resistance,” D. L. Watson and A. W. A. Brown, eds., pp. 261–302, Academic Press, New York.Google Scholar
  89. Kramer, S. J., 1978, Regulation of the activity of JH-specific esterases in the Colorado potato beetle, Leptinotarsa decemlineata, J. Ins-eat Physiol., 24:743.Google Scholar
  90. Kramer, S. J., Wieten, M., and deKort, C. A. D., 1977, Metabolism of juvenile hormone in the Colorado potato beetle, Leptinotarsa decemlineata 3 Insect Biochem., 7:231.Google Scholar
  91. Kuhr, R. J., and Dorough, H. W., 1976, “Carbamate Insecticides: Chemistry, Biochemisiiry, and Toxicology,” CRC Press, Cleveland, Ohio.Google Scholar
  92. Law, J. H., Yuan, C., and Williams, C. H., 1966, Synthesis: of a material with juvenile hormone activity, Proc. Nat. Acad. Sci., 55:576.PubMedCrossRefGoogle Scholar
  93. Lieberman, M., 1977, Post harvest responses and plant growth regulators, in: “Pesticide Chemistry in the 20th Century,” ACS Symposium Series #37, J. R. Plimmer, ed., pp. 280–292, ACS, Washington, D. C.CrossRefGoogle Scholar
  94. Lukovits, I., Toth, B., Varjas, L., and Matolcsy, G., 1978, Quantitative relationship between structure and anti-ecdysone activity of triarimol analogues, Acta Phytopath. Eung. 3 13:227.Google Scholar
  95. McCaleb, D. C., and Kumaran, A. K., 1979, Control of juvenile hormone esterase activity in Galleria mellonella larvae, J. Insect Physiol.j in press.Google Scholar
  96. Maddrell, S. H. P., and Reynolds, S. E., 1972, Release of hormone in insects after poisoning with insecticides, Nature (London), 236:404.PubMedCrossRefGoogle Scholar
  97. Mane, S. D., and Rembold, H., 1977, Developmental kinetics of juvenile hormone inactivation in queen and worker castes of the honey bee, Apis mellifera, Insect Biochem., 7:463.CrossRefGoogle Scholar
  98. Matolcsy, G., Varjas, L., and Bordas, B., 1975, Inhibitors of steroid biosynthesis as potential antihormones, Acta Phytopathologica Academiae Scientiarum Hungaricae, 10:455.Google Scholar
  99. Menn, J. J., 1980, Contemporary frontiers in chemical pesticide research, J. Ag. Pood Chem., 28:2.CrossRefGoogle Scholar
  100. Menn, J. J., and Pallos, F. M., 1975, Development of morphogenetic agents in insect control, in: “Insecticides of the Future,” M. Jacobson, ed., pp. 71–88, Marcel Dekker Inc., New York.Google Scholar
  101. Messenger, P. S., Biliotti, E., and van den Bosch, R., 1976, The importance of natural enemies in integrated control, in: “Theory and Practice of Biological Control,” C. B. Huffaker and P. S. Messenger, eds., pp. 543–563, Academic Press, New York.Google Scholar
  102. Metcalf, R. L., 1980, Changing role of insecticides in crop protection, Ann. Rev. Entomol., 25:219.CrossRefGoogle Scholar
  103. Metcalf, R. L., Lu, P.-Y., and Bowlus, S., 1975, Degradation and environmental fate of l-(2,6-difluorobenzoyl)-3-(4-chlorophenyl) urea, J. Ag. Food Chem., 23:359.CrossRefGoogle Scholar
  104. Morello, A., and Agosin, M., 1979, Metabolism of juvenile hormone with isolated rat hepatocytes, Biochem. Pharmacol., 28:1533.PubMedCrossRefGoogle Scholar
  105. Mori, K., Takigawa, T., Manabe, Y., Tominaga, M., Matsui, M., Kiguchi, K., Akai, H., and Ohtaki, T., 1975, Effect of the molecular chain length on biological activity of juvenile hormone analogs, Agr. Biol. Chem., 39:259.CrossRefGoogle Scholar
  106. Mumby, S. M., Hammock, B. D., Sparks, T. C., and Ota, K., 1979, Synthesis and bioassay of carbamate inhibitors of the juvenile hormone hydrolyzing esterases from the house fly, Musca domestical J. Ag. Food Chem., 27:763.CrossRefGoogle Scholar
  107. Mullin, C. A., 1979, Purification and properties of an epoxide hydratase from the midgut of the southern armyworm (Spodoptera eridania), Ph.D. thesis, Cornell University, Ithaca, N. Y.Google Scholar
  108. Murakoshi, S., Nakata, T., Ohtsuka, Y., Akita, H., Tahara, A., and Tamura, S., 1975, Appearance of three-moulters from larvae of the silkworm, Bombyx mori L., by oral administration of abietic acid derivatives, Jeep J. appl. Entomol. Zool., 19:267.CrossRefGoogle Scholar
  109. Nowock, J., and Gilbert, L. E., 1976, In vitro analysis of factors regulating the juvenile hormone titer of insects, in: “Invertebrate Tissue Culture,” E. Kurstak and K. Maramorosch, eds., pp. 203–212, Academic Press, New York.Google Scholar
  110. Ohta, T., Kuhr, R. J., and Bowers, W. S., 1977, Radiosynthesis and metabolism of the insect anti-juvenile hormone, precocene II, J. Ag. Food ehem., 25:478.CrossRefGoogle Scholar
  111. Oppenoorth, F. J., and van der Pas, L. J. T., 1977, Cross-resistance of diflubenzuron in resistant strains of house fly, Musoa domestioa, Ent. exp. Appl., 21:217.CrossRefGoogle Scholar
  112. Ordish, G., 1967, “Biological Methods in Crop Pest Control,” Constable, London.Google Scholar
  113. Pener, M. P., Orshan, L., and De Wilde, J., 1978, Precocene II causes atrophy of corpora allata in Locusta migratoria, Nature, 272:350.CrossRefGoogle Scholar
  114. Pimprikar, G.., and Georghiou, G. P., 1979, Mechanisms of resistance to diflubenzuron in the house fly Musoa domestica (L.), Pestio. Bioehem. Physiol., 12:10.CrossRefGoogle Scholar
  115. Plapp, F. W., 1976a, Biochemical genetics of insecticide resistance, Ann. Rev. Entomol., 21:179.CrossRefGoogle Scholar
  116. Plapp, F. W., 1976b, Chlordimeform as a synergist for insecticides against the tobacco budworm, J. Eoon. Entomol., 69:91.Google Scholar
  117. Plapp, F. W., and Vinson, S. B., 1973, Juvenile hormone analogues: Toxicity and cross-resistance in the house fly, Pestio. Bioehem. Physiol., 3:131.CrossRefGoogle Scholar
  118. Pratt, G. E., 1975, Inhibition of juvenile hormone carboxylesterase of locust haemolymph by organophosphates in vitro, Inseet Bioohem., 5:595.CrossRefGoogle Scholar
  119. Pratt, G. E., and Bowers, W. S., 1977, Precocene II inhibits juvenile hormone biosynthesis by cockroach corpora allata in vitro, Nature, 265:548.PubMedCrossRefGoogle Scholar
  120. Pratt, G. E., and Finney, J. R., 1911, Chemical inhibitors of juvenile hormone biosynthesis in vitro, in: “Crop Protection Agents— Their Biological Evaluation,” N. R. McFarlane, ed., pp. 113–132, Academic Press, New York.Google Scholar
  121. Quistad, G. B., Staiger, L. E., and Schooley, D. A., 1975, Environmental degradation of the insect growth regulator methoprene V. Metabolism by houseflies and mosquitoes, Pestio. Bioohem. Physiol., 5:253.CrossRefGoogle Scholar
  122. Reddy, G., Hwang-Hsu, K., and Kumaran, A. K., 1979, Factors influencing juvenile hormone esterase activity in the wax moth, Galleria mellonella, J. Inseot Physiol., 25:65.CrossRefGoogle Scholar
  123. Riddiford, L. M., and Truman, J. W., 1978, Biochemistry of insect hormones and insect growth regulators, in: “Biochemistry of Insects,” M. Rockstein, ed., pp. 307–357, Academic Press, New York.Google Scholar
  124. Roller, H., Dahm, K. H., Sweely, C. C., and Trost, B. M., 1967, The structure of juvenile hormone, Angew. Chem. internat. Edit., 6:179.CrossRefGoogle Scholar
  125. Rongsriyam, Y., and Busvine, J. R., 1975, Cross-resistance in DDT-resistant strains of various mosquitoes (Diptera, Culicadae), Bull. ent. Res., 65:459.CrossRefGoogle Scholar
  126. Rupes, V., Zdarek, J., Svandova, E., and Pinterova, J., 1976, Cross-resistance to a juvenile hormone analogue in wild strains of the house fly, Ent. exp. Appl., 19:57.CrossRefGoogle Scholar
  127. Ruscoe, C. N. E., 1974, Exploitation of insect endocrine systems, Chem. Ind. (London), 16:648.Google Scholar
  128. Samaranayaka, M., 1974, Insecticide-induced release of hyperglycaemic and adipolinetic hormones of Schistocerca gregaria, Gen. Comp. Endocrinol., 24:424.PubMedCrossRefGoogle Scholar
  129. Sanborn, J. R., and Fukuto, T. R., 1972, Insecticidal, anticholinesterase, and hydrolytic properties of S-aryl phosphoamido-thioates, J. Ag. Food Chem., 20:926.CrossRefGoogle Scholar
  130. Sanburg, L. L., Kramer, K. J., Kezdy, F. J., and Law, J. H., 1975a, Juvenile hormone-specific esterases in the hemolymph of the tobacco hornworm, Manduca sexta, J. Insect Physiol., 21:873.CrossRefGoogle Scholar
  131. Sanburg, L. L., Kramer, K. J., Kezdy, F. J., Law, J. J., and Oberländer, H., 1975b, Role of juvenile hormone esterases and carrier proteins in insect development, Nature, 253:266.CrossRefGoogle Scholar
  132. Schaefer, C. H., and Wilder, W. H., 1972, Insect development inhibitors: A practice evaluation as mosquito control agents, J. Econ. Entomol., 65:1066.Google Scholar
  133. Schaefer, C. H., and Wilder, W. H., 1973, Insect development inhibitors. 2. Effects on target mosquito species, J. Econ. Entomol., 66:913.PubMedGoogle Scholar
  134. Schneiderman, H. A., 1971, The strategy of controlling insect pests with growth regulators, Mitt. Schweiz. Entomol. Ges., 44:141.Google Scholar
  135. Schneiderman, H. A., 1972, Insect hormones and insect control, in: “Insect Juvenile Hormones: Chemistry and Action,” J. J. Menn and M. Beroza, eds., pp. 3–27, Academic Press, New York.Google Scholar
  136. Schooley, D. A., and Bergot, B. J., 1979, Biochemical studies on juvenile hormone antagonists, Paper 70, Pesticide Chemistry Div. 178th National American Chemical Society National Meeting, Sept. 9–14, Washington, D.C.Google Scholar
  137. Schooneveld, H., Kramer, S. J., Privee, H., and Van Huis, A., 1979, Evidence of controlled corpus allatum activity in the adult Colorado potato beetle, J. Insect Physiol., 25:449.CrossRefGoogle Scholar
  138. Schwarz, M., Miller, R. W., Wright, J. E., Chamberlain, W. F., and Hopkins, D. E., 1974, Compounds related to juvenile hormone. Exceptional activity of arylterpenoid compounds in four species of flies, J. Econ. Entomol., 67:598.PubMedGoogle Scholar
  139. Sehnal, F., 1976, Action of juvenoids on different groups of insects, in: “The Juvenile Hormones,” L. I. Gilbert, ed., pp. 301–322, Plenum Press, New York.Google Scholar
  140. Siddall, J. B., 1976, Insect growth regulators and insect control: A critical appraisal, Environ. Hlth. Per spec, 14:119.CrossRefGoogle Scholar
  141. Silhacek, D. L., Oberlander, H., and Zettler, J. L., 1976, Susceptibility of malathion-resistant strains of Plodia interpunctella to juvenile hormone treatments, J. Stored Prod. Res., 12:201.CrossRefGoogle Scholar
  142. Slade, M., 1975, unpublished information.Google Scholar
  143. Slade, M., and Wilkinson, C. F., 1973, Juvenile hormone analogs: A possible case of mistaken identity, Science, 181:672.PubMedCrossRefGoogle Scholar
  144. Slade, M., and Wilkinson, C. F., 1974, Degradation and conjugation of Cecropia juvenile hormone by southern armyworm (Prodenia eridania), Comp. Biochem. Physiol., 49B: 99.Google Scholar
  145. Slade, M., and Zibitt, C. H., 1971, Metabolism of cecropia juvenile hormone in lepidopterans, in: “Chemical Releasers in Insects. Proceedings of International IUPAC Congress on Pesticide Chemistry,” A. S. Tahori, ed., 3:45, Gordon and Brench, New York.Google Scholar
  146. Slade, M., and Zibitt, C. H., 1972, Metabolism of cecropia juvenile hormone in insects and mammals, in: “Insect Juvenile Hormones, Chemistry and Action,” J. J. Menn and M. Beroza, eds., pp. 155–176, Academic Press, New York.Google Scholar
  147. Slade, M., Brooks, G. T., Hetnarski, H. K., and Wilkinson, C. F., 1975, Inhibition of the enzymatic hydration of the epoxide HEOM in insects, Pestic. Biochem. Physiol., 5:35.CrossRefGoogle Scholar
  148. Slama, K., 1978, The principles of antihormone action in insects, Acta Entomologioa Bohemoslovaca, 75:65.Google Scholar
  149. Slama, K., and Romanuk, M., 1976, Juvenogens, biochemically activated juvenoid complexes, Insect Biochem., 6:579.CrossRefGoogle Scholar
  150. Slama, K., Romanuk, M., and Sorm, F., 1974, “Insect Hormones and Bio-analogues,” 477p., Springer-Verlag, New York.CrossRefGoogle Scholar
  151. Slama, K., Kahovcova, J., and Romanuk, M., 1978, Action of some aromatic juvenogen esters on insects, Pestic. Biochem. Physiol., 9:313.CrossRefGoogle Scholar
  152. Smith, R. F., 1970, Pesticides: Their use and limitations in pest management, in: “Concepts of Pest Management,” R. L. Rabb and F. E. Guthrie, eds., pp. 103–118, North Carolina State University, Raleigh.Google Scholar
  153. Solomon, K. R., and Metcalf, R. L., 1974, The effect of piperonyl butoxide and triorthocresyl phosphate on the activity and metabolism of Altosid (isopropyl ll-methoxy-3,7,ll-trimethyl-dodeca-2,4-dienoate) in Tenebrio molitov L. and Oncopeltus fasciatus (Dallas), Pestic. Biochem. Physiol., 4:127.CrossRefGoogle Scholar
  154. Sorm, F., 1971, Some juvenile hormone analogues, Mitt. Schwiez ent. Gell., 44:7.Google Scholar
  155. Sparks, T. C., and Hammock, B. D., 1979a, Induction and regulation of juvenile hormone esterases during the last larval instar of the cabbage looper, Trichoplusia ni, J. Insect Physiol., 25:551.CrossRefGoogle Scholar
  156. Sparks, T. C., and Hammock, B. D., 1979b, A comparison of the induced and naturally occurring juvenile hormone esterases from last instar larvae of Trichoplusia ni, Insect Biochem., 9:411.CrossRefGoogle Scholar
  157. Sparks, T. C., and Hammock, B. D., 1980, Comparative inhibition of the juvenile hormone esterases from Trichoplusia ni, Musca domestica and Tenebrio molitor, Pestic. Biochem. Physiol., submitted.Google Scholar
  158. Sparks, T. C., Willis, W. S., Shorey, H. H., and Hammock, B. D., 1979a, Haemolymph juvenile hormone esterase activity in synchronous last instar larvae of the cabbage looper, Trichoplusia ni, J. Insect Physiol., 25:125.CrossRefGoogle Scholar
  159. Sparks, T. C., Wing, K. D., and Hammock, B. D., 1979b, Effects of the antihormone-hormone mimic ETB on the induction of insect juvenile hormone esterase in Trichoplusia ni, Life Sci., 25:445.CrossRefGoogle Scholar
  160. Staal, G. B., 1975, Insect growth regulators with juvenile hormone activity, Ann. Rev. Entomol., 20:417.CrossRefGoogle Scholar
  161. Staal, G. B., 1977, Insect control with insect growth regulators based on insect hormones, in: “Natural Products and the Protection of Plants,” G. G. Marini-Bettolo, ed., pp. 353–383, Elsevier Scientific Publishing Co., New York.Google Scholar
  162. Staal, G. B., 1979, Essential differences between natural juvenile hormones and juvenile hormone analogs elucidated by use of a substitution assay, Tont. Acad. Seien. Scripta Varia, The Vatican 41:353.Google Scholar
  163. Still, G. G., and Lepold, R. A., 1978, The elimination of (N[[(4-chlorophenyl)amino]carbonyl]-2,6-difluorobenzamide) by the boll weevil, Pestic. Biochem. Physiol., 9:304.CrossRefGoogle Scholar
  164. Sweeny, M., 1978, Fourth radioimmunoassay directory, Lab World, 29:48.Google Scholar
  165. Sylwester, A., Wing, K. D., and Hammock, B. D., 1979, Immunochemical analysis of insecticides: Haptens and antigens for the insect growth regulator diflubenzuron, Paper 30, 63rd Pacific Branch meeting of the Entomological Society of America, June 26–28, Fresno, California.Google Scholar
  166. Terriere, L. C., and Yu, S. J., 1973, Insect juvenile hormones: Induction of detoxifying enzymes in the house fly and detoxification by house fly enzymes, Pestic. Biochem. Physiol., 3:96.CrossRefGoogle Scholar
  167. Terriere, L. C., and Yu, S. J., 1911, Juvenile hormone analogs: In vitro metabolism in relation to biological activity in blow flies and flesh flies, Pestic. Biochem. Physiol., 7:161.CrossRefGoogle Scholar
  168. Tobe, S. S., and Stay, B., 1979, Modulation of juvenile hormone synthesis by an analogue in the cockroach, Nature, 281:481.CrossRefGoogle Scholar
  169. Vea, E. V., Yu, C.-C, Webb, D. R., Eckenrode, C. J., and Kuhr, R. J., 1976, Laboratory and field evaluation of insecticides and insect growth regulator for control of the seedcorn maggot, J. Econ. Entomol., 69:178.Google Scholar
  170. Verloop, A., and Ferrell, C. D., 1977, Benzoylphenyl ureas—a new group of larvicides interfering with chitin disposition, in: “Pesticide Chemistry in the 20th Century,” ACS Symp. Ser. #37, J. R. Plimmer, ed., pp. 237–270, ACS, Washington, D.C.CrossRefGoogle Scholar
  171. Vince, R. K., and Gilbert, L. I., 1977, Juvenile hormone esterase activity in precisely timed last instar larvae and pharate pupae of Manduca sexta, Insect Biochem., 7:115.CrossRefGoogle Scholar
  172. Vinson, S. G., and Plapp, F. W., 1974, Third generation pesticides: The potential for the development of resistance by insects, J. Ag. Food Chem., 22:356.CrossRefGoogle Scholar
  173. Wardlow, L. R., Ludlam, A. G., and Bradley, L. F., 1976, Pesticide resistance in glasshouse whitefly (Trialeurodes vaporariorum West.), Pestic. Sci., 7:320.CrossRefGoogle Scholar
  174. Weirich, G., and Wren, J., 1973, The substrate specificity of juvenile hormone esterase from Manduoa sexta haemolymph, Life Sci., 13:213.PubMedCrossRefGoogle Scholar
  175. Weirich, G., and Wren, J., 1976, Juvenile hormone esterase in insect development: A comparative study, Physiol. Zool., 49:341.Google Scholar
  176. Weirich, G., Wren, J., and Siddall, J. B., 1973, Developmental changes of the juvenile hormone esterase activity in haemolymph of the tobacco hornworm, Manduoa sexta, Insect Biochem., 3:397. Wellinga, K., Mulder, R., and van Daalen, J. J., 1973, Synthesis and laboratory evaluation of l-(2,6-disubstituted benzoyl)-3-phenyl-ureas, a new class of insecticides. I. l-(2,6-dichlorobenzoyl)- 3-phenylureas, J. Ag. Food Chem., 21:348.CrossRefGoogle Scholar
  177. White, A. F., 1972, Metabolism of the juvenile hormone analogue methyl farnesoate 10,11-epoxide in two insect species, Life Sci., 2:201.CrossRefGoogle Scholar
  178. Whitmore, D., Whitmore, E., and Gilbert, L. I., 1972, Juvenile hormone induction of esterases: A mechanism for the regulation of juvenile hormone titer, Pvoc. Nat. Aead. Sci., USA, 69:1592.CrossRefGoogle Scholar
  179. Wilkinson, C. F., 1976, Insecticide synergism, in: “The Future for Insecticides,” R. L. Metcalf and J. J. McKelvey, eds., pp. 195–218, John Wiley and Sons, New York.Google Scholar
  180. Williams, C. M., 1967, Third-generation pesticides, Sci. Am., 217:13.PubMedCrossRefGoogle Scholar
  181. Williams, C. M., 1976, Juvenile hormone ----- in retrospect and in prospect, in: “The Juvenile Hormones,” L. I. Gilbert, ed., pp. 1–14, Plenum Press, New York.Google Scholar
  182. Wilson, T. G., and Gilbert, L. I., 1978, Metabolism of juvenile hormone I in Drosophila melanogastev, Comp. Biochem. Physiol., 60A:85.Google Scholar
  183. Winteringham, F. P. W., 1969, Mechanisms of selective insecticidal action, Ann. Rev. Entomol., 14:409.CrossRefGoogle Scholar
  184. Yu, S. J., and Terriere, L. C., 1975, Microsomal metabolism of juvenile hormone analogs in the house fly, Musca domestica L., Pestic. Biochem. Physiol., 5:418.CrossRefGoogle Scholar
  185. Yu, S. J., and Terriere, L. C., 1977, Metabolism of C Clhydroprene (ethyl 3,7,ll-trimethyl-2,4-dodecadienoate) by microsomal oxidases and esterases from three species of Diptera, J. Ag. Food Chem., 25:1076.CrossRefGoogle Scholar
  186. Yu, S. J., and Terriere, L. C., 1978a, Metabolism of juvenile hormone I by microsomal oxidase, esterase, and epoxide hydrase of Musca domestica and some comparisons with Phovmia vegina and Savcophaga bullata, Pestic. Biochem. Physiol., 9:237.CrossRefGoogle Scholar
  187. Yu, S. J., and Terriere, L. C., 1978b, Juvenile hormone epoxide hydrase in house flies, flesh flies and blow flies, Insect Biochem., 8:349.CrossRefGoogle Scholar
  188. Zurflueh, R. C., 1976, Phenylethers as insect growth regulators: Laboratory and field experiments, in: “The Juvenile Hormones,” L. I. Gilbert, ed., pp. 61–74, Plenum Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Thomas C. Sparks
    • 1
  • Bruce D. Hammock
    • 1
  1. 1.Department of Entomology, Louisiana Agricultural Experiment StationLouisiana State UniversityBaton RougeUSA

Personalised recommendations