Suppression of Metabolic Resistance Through Chemical Structure Modification

  • T. Roy Fukuto
  • Narayana M. Mallipudi


One of the major causes for the development of resistance to the toxic action of insecticides is the ability of the insect to modify or detoxify the insecticide at a rate fast enough to prevent critical buildup of the active material at the target site. This insecticide detoxification may occur by means of a variety of metabolic processes in which the parent material is converted into a nontoxic form or into a form that can be rapidly eliminated from the insect body. These processes are well described elsewhere in this volume.


Insecticidal Activity Spider Mite Mosquito Larva Phytoseiid Mite Organophosphorus Insecticide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu-El-Haj, S., Fahmy, M. A. H., and Fukuto, T. R., 1979, Insecticidal activity of l,l,l-trichloro-2,2-bis(p-chlorophenyl)-ethane (DDT) analogues, J. Agric. Food Chem., 27:258.CrossRefGoogle Scholar
  2. Barker, R. J., 1960, Syntheses of the aliphatic deuterium analogs of DDT and TDE and their toxicity and degradation when applied to adult houseflies, J. Econ. Entomol., 53:35.Google Scholar
  3. Dauterman, W. C., and Matsumura, F., 1962, Effect of malathion analogs upon resistant and susceptible Culex tarsalis mosquitoes, Science, 138:694.PubMedCrossRefGoogle Scholar
  4. Fahmy, M. A. H., and Fukuto, T. R., 1970, Insecticidal activity of W-acylcarbamates on susceptible and carbaryl-resistant strains of the Egyptian cotton leafworm, J. Econ. Entomol., 63:1783.Google Scholar
  5. Fahmy, M. A. H., Fukuto, T. R., Myers, R. O., and March, R. B., 1970, The selective toxicity of new il/-phosphorothioylcarbamate esters, J. Agric. Food Chem., 18:793.PubMedCrossRefGoogle Scholar
  6. Fahmy, M. A. H., Fukuto, T. R., Metcalf, R. L., and Holmstead, R. L., 1973, Structure-activity correlations in DDT analogs, J. Agric. Food Chem., 21:585.PubMedCrossRefGoogle Scholar
  7. Fahmy, M. A. H., Mallipudi, N. M., and Fukuto, T. R., 1978, Selective toxicity of N,N’-thiodicarbamates, J. Agric. Food Chem., 26:550.PubMedCrossRefGoogle Scholar
  8. Fukuto, T. R., 1976, Carbamate insecticides, in: “The Future for Insecticides: Needs and Prospects,” R. L. Metcalf and J. J. McKelvey Jr., eds., Adv. Environ. Sci. Technol., 6:313–346, Wiley-Interscience, New York.Google Scholar
  9. Hennessy, D. J., Fratantoni, J., Hartigan, J., Moorefield, H. H., and Weiden, M. H. J., 1961, Toxicity of 2-(2-halogen-4-chloro-phenyl)-2-(4-chlorophenyl)-l,l,l-trichloroethanes to normal and to DDT-resistant house-flies, Nature, 190:341.PubMedCrossRefGoogle Scholar
  10. Holan, G., 1969, New halocyclopropane insecticides and the mode of action of DDT, Nature, 221:1025.PubMedCrossRefGoogle Scholar
  11. Holan, G., 1971a, Rational design of insecticides, Bull. Wld. Hlth. Org., 44:355.Google Scholar
  12. Holan, G., 1971b, Rational design of degradable insecticides, Nature, 232:644.CrossRefGoogle Scholar
  13. Krieger, R. I., Lee, P. W., Fahmy, M. A. H., Chen, M., and Fukuto, T. R., 1976, Metabolism of 2,2-dimethyl-2,3-dihydrobenzofuranyl-7-N-dimethoxyphosphinothioyl-#-methylcarbamate in the house fly, rat and mouse, Pestic. Biochem. Physiol., 6:1.CrossRefGoogle Scholar
  14. Krueger, H. R., and O’Brien, R. D., 1959, Relationship between metabolism and differential toxicity of malathion in insects and mice, J. Econ. Entomol., 52:1063.Google Scholar
  15. Lawson, M. A., 1971, “Toxicology and Mode of Action of N,N’-Thlodi-carbamates in Susceptible and Resistant Culex quinquefasciatus Say Larvae,” Ph. D. dissertation, University of California, Riverside.Google Scholar
  16. Lipke, H., and Kearns, C. W., 1960, DDT-dehydrochlorinase, Advan. Pest Control Res., 3:253.Google Scholar
  17. Matsumura, F., and Brown, A. W. A., 1961, Biochemistry of malathion resistance in Culex tccrsalis, J. Econ. Entomol., 54:1176Google Scholar
  18. Matsumura, F., and Dauterman, W. C., 1964, Effect of malathion analogues on a malathion-resistant housefly strain which possesses a detoxication enzyme, carboxylesterase, Nature, 202:1356.PubMedCrossRefGoogle Scholar
  19. Matsumura, F., and Voss, G., 1964, Mechanism of malathion and para- thion resistance in the two-spotted spider mite Tetranychusurticae, J. Econ. Entomol., 57:911.Google Scholar
  20. Matsumura, F., and Voss, G., 1965, Properties of partially purified malathion carboxylesterase of the two-spotted spider mite, J. Insect Physiol., 11:147.PubMedCrossRefGoogle Scholar
  21. Metcalf, R. L., and Fukuto, T. R., 1968, The comparative toxicity of DDT and analogues to susceptible and resistant houseflies and mosquitoes, Bull. Wld. Hlth. Org., 38:633.Google Scholar
  22. Metcalf, R. L., Kapoor, I. P., and Hirwe, A. S., 1971, Biodegradable analogues of DDT, Bull. Wld. Hlth. Org., 44:363.Google Scholar
  23. Moorefield, H. H., Weiden, M. H. J., and Hennessy, D. J., 1962, Relationship of the insecticidal and the free radical activities of DDT, Contrib. Boyce Thompson Inst., 21:481.Google Scholar
  24. Motoyama, N., and Dauterman, W. C., 1972, In vitro metabolism of azinphosmethyl in susceptible and resistant houseflies, Pestic. Bioohem. Physiol., 2:113.CrossRefGoogle Scholar
  25. Motoyama, N., Rock, G. C., and Dauterman, W. C., 1971, Studies on the mechanism of azinphosmethyl resistance in the predaceous mite, Neoseiulus (T.) fallacis (Family: Phytoseiidae), Pestio. Bioohem. Physiol., 1:205.CrossRefGoogle Scholar
  26. Motoyama, N., Dauterman, W. C., and Rock, G. C., 1917, Toxicity of N-alkyl analogues of azinphosmethyl and other insecticides to resistant and susceptible predaceous mites, Amblyseius fallacis, J. Econ. Entomol., 70:475.Google Scholar
  27. Mullins, L. J., 1956, Structure of nerve cell membranes, Amer. Inst. Biol. Sci. Publ., 1:123.Google Scholar
  28. Pillai, M. K. K., Hennessy, D. J., and Brown, A. W. A., 1963, Deuterated analogues as remedial insecticides against DDT- resistant Aedes aegypti, Mosq. News, 23:118.Google Scholar
  29. Plapp, P. W., Jr., Orchard, R. D., and Morgan, J. W., 1965, Analogs of parathion and malathion as substitute insecticides for the control of resistant house flies and the mosquito Culex tarsalis, J. Econ. Entomol., 58:953.PubMedGoogle Scholar
  30. Townsend, M. G., and Busvine, J. R., 1969, The mechanism of malathion resistance in the blowfly Chrysomya putoria, Entomol. Exp. Appl., 12:243.CrossRefGoogle Scholar
  31. Tsukamoto, M., 1961, Metabolic fate of DDT in Drosophila melanogaster, III. Comparative studies, Botyu-Kagaku, 26:74.Google Scholar
  32. Voss, G., Dauterman, W. C., and Matsumura, F., 1964, Relation between toxicity of malathion analog and organophosphate resistance in the two-spotted spider mite, J. Econ. Entomol., 57:808.Google Scholar
  33. Welling, W., and Blaakmeer, P. T., 1971, Metabolism of malathion in a resistant and a susceptible strain of houseflies, in: “Proceedings of the 2nd International IUPAC Congress of Pesticide Chemistry, Vol. II,” A. S. Tahori, ed., pp. 61–75, Gordon and Breach, New York.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • T. Roy Fukuto
    • 1
  • Narayana M. Mallipudi
    • 1
  1. 1.Division of Toxicology and Physiology, Department of EntomologyUniversity of CaliforniaRiversideUSA

Personalised recommendations